← 返回
氢能与燃料电池 储能系统 ★ 4.0

通过动态压力和温度控制优化质子交换膜电解槽性能:一种混合整数线性规划方法

Optimizing proton exchange membrane electrolyzer performance through dynamic pressure and temperature control: A mixed-integer linear programming approach

作者 Roque Aguado · Marcos Tostado-Véliz · Umberto Desideri · Francisco Jurado
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 345 卷
技术分类 氢能与燃料电池
技术标签 储能系统
相关度评分 ★★★★ 4.0 / 5.0
关键词 A new model for pressure–temperature control in PEM electrolyzers is developed.
语言:

中文摘要

摘要 氢能是一种关键的能源载体,尤其在利用可再生能源驱动水电解制氢时,对多个领域的脱碳具有重要意义。质子交换膜(PEM)电解槽因其能够快速响应波动的电力输入而非常适合这一应用。尽管传统上在高温高压条件下运行以减少加热和压缩需求,但近期研究表明,在部分负载下,较低的运行条件可能提升效率。本研究提出了一种新颖的优化框架,用于动态调节PEM电解槽中的压力和温度。该模型在混合整数线性规划(MILP)框架内集成效率映射,并采用McCormick紧致化方法处理非线性问题。为期一周的案例研究表明,通过最优控制策略可使运行成本最高降低12.5%,该策略在低电流密度下倾向于采用较低的温度和压力,而在接近额定负载时则采用较高温度,同时保持中等压力水平。结果表明,该方法提高了效率并减少了氢气交叉渗透,从而增强了安全性,并支持在较长时间尺度上的可扩展应用。这些发现对于氢气生产与储存系统的长期规划与评估具有重要参考价值。

English Abstract

Abstract Hydrogen is a key energy carrier for decarbonizing multiple sectors, particularly when produced via water electrolysis powered by renewable energy. Proton exchange membrane (PEM) electrolyzers are well suited for this application due to their ability to rapidly adjust to fluctuating power inputs. Despite being conventionally operated at high temperatures and pressures to reduce heating and compression needs, recent studies suggest that under partial loads, lower operating conditions may enhance efficiency. This study introduces a novel optimization framework for dynamically adjusting pressure and temperature in PEM electrolyzers. The model integrates an efficiency map within a Mixed-Integer Linear Programming (MILP) formulation and applies McCormick tightening to address nonlinearities. A one-week case study demonstrates operational cost reductions of up to 12.5 % through optimal control, favoring lower temperatures and pressures at low current densities and higher temperatures near rated load, while maintaining moderate pressures. The results show improved efficiency and reduced hydrogen crossover, enhancing safety and enabling scalable application over extended time horizons. These insights are valuable for long-term planning and evaluation of hydrogen production and storage systems.
S

SunView 深度解读

该PEM电解槽动态压力温度优化技术对阳光电源储能系统与制氢耦合方案具有重要价值。研究采用的MILP优化框架与阳光电源ST系列PCS的先进控制策略高度契合,可实现12.5%运行成本降低。建议将该动态调控算法集成至iSolarCloud平台,结合PowerTitan储能系统的GFM控制技术,优化光伏-储能-制氢全链条能量管理,在低负载时降低电解槽运行参数以提升效率,额定负载时提高温度保证产氢量,为公司绿氢一体化解决方案提供核心竞争力。