← 返回
电动汽车驱动 储能系统 ★ 4.0

R744热管理系统在实车电动汽车测试中的能量流动态分析与区间次优控制

Energy flow dynamic analysis and interval suboptimal control for real electric vehicle testing with R744 thermal management system

作者 Jilin Rena · Shucheng Zhang · Hongxiao Zheng · Xiang Yina · Feng Caoa · Xifeng Sunb · Xiaolin Wangc
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 346 卷
技术分类 电动汽车驱动
技术标签 储能系统
相关度评分 ★★★★ 4.0 / 5.0
关键词 Performance of real electric vehicle with R744 TMS was tested in various temperature.
语言:

中文摘要

摘要 R744热管理系统(TMS)由于CO2作为制冷剂具有环境友好性和优异性能,被视为电动汽车(EVs)的有前景解决方案。然而,当前研究仍局限于台架试验和仿真,未能全面评估其在真实车辆运行场景下的动态应用效果,因而难以有效延长续航里程。本研究构建了能量流动态测试系统,并在电动汽车环境试验实验室中开展了实车实验。采用动态能量流动态分析方法,总结了环境温度、热管理需求、车速及行驶时间对能量流分布的具体影响。通过逐步细化时间尺度的分析过程,获得了更为丰富的电动汽车能量流动信息,揭示了R744 TMS的详细运行特性。实验在-7°C、0°C、35°C、40°C和45°C的环境温度下进行,结果表明能量流动系统在第三次CLTC循环后基本趋于稳定。在CLTC循环中,TMS的能量消耗从低速段到中速段降低了30%,从中速段到高速段进一步降低20%。本研究评估了电动汽车外部动态条件的影响,并提出一种区间次优控制方法用于调控R744 TMS的排气压力,该方法在动态控制难度与最优性能需求之间实现了平衡,从而提升了R744 TMS的实际可行性。采用该控制方法后,热力学参数波动仅导致续航里程波动3至7 km。总体而言,本研究通过实车测试、动态分析方法以及系统鲁棒性验证,显著推动了电动汽车热管理系统领域的研究进展。

English Abstract

Abstract R744 thermal management systems (TMS) are regarded as promising for electric vehicles (EVs) due to environmental friendliness and excellent performance of CO 2 as refrigerant. However, current research remains limited to bench tests and simulations, failing to comprehensively evaluate their dynamic application effects in real-world vehicle scenarios, making it challenging to extend driving range. This study established an energy flow testing system and operated experiments for real electric vehicles in EVs environmental test laboratory. Using dynamic energy flow analysis approach, the study summarized the specific impacts of ambient temperature, thermal management demands, vehicle speed, and driving time on energy flow distribution. Through the analysis process with gradually refined time scales, richer energy flow information for electric vehicles was obtained, revealing the detailed performance of the R744 TMS. The test was operated at ambient temperature of −7°C, 0 °C, 35 °C, 40 °C and 45 °C and the energy flow system nearly stabilizes after the third CLTC cycle. The energy consumption of the TMS decreases by 30 % from the low-speed to medium-speed, and decreased by 20 % to high-speed intervals of the CLTC cycle. The study evaluated the influence of dynamic outside conditions of electric vehicles and proposed an interval suboptimal control method to manage the discharge pressure of R744 TMS, which balances the difficulty of dynamic control with the requirements for optimal performance, thereby enhancing the practical feasibility of R744 TMS. Using the control method, thermodynamic parameter fluctuations only result in a driving range fluctuation of only 3 to 7 km. Overall, this study could significantly advance research progress in TMS of EVs by real vehicle testing, dynamic analytical approaches, and systematic robustness validation.
S

SunView 深度解读

该R744热管理系统动态能流分析技术对阳光电源电动汽车充电站及储能系统具有重要借鉴价值。研究揭示的温度、车速对能耗分布的影响规律,可应用于充电站智能调度策略优化,通过iSolarCloud平台实现充电功率动态调节。其区间次优控制方法可启发ST系列PCS的热管理优化,在环境温度波动时保持系统稳定性。动态能流测试方法论可移植至PowerTitan储能系统的全工况性能评估,提升极端气候下的能效管理能力,为充储一体化解决方案的热管理协同控制提供技术路径。