← 返回
光伏发电技术 工商业光伏 ★ 5.0

双掺杂和三掺杂碳点作为新型添加剂用于缺陷钝化以提升钙钛矿太阳能电池性能

Dual- and triple- hetero-atom-doped carbon dots as novel additives for the engineering of defects passivation to boost performance of perovskite solar cells

语言:

中文摘要

基于碘化铅甲胺(MAPbI3)的钙钛矿太阳能电池(PSCs)具有高效的光伏性能。然而,诸如稳定性差以及易形成缺陷从而降低薄膜质量等不利因素限制了其商业化进程。在本研究中,我们报道了通过水热法合成双掺杂和三掺杂杂原子碳量子点(CQDs),并研究了其作为添加剂对PSCs性能的影响。文中描述了硼(B)和磷(P)共掺杂的碳点(B,P-CQDs)、硫(S)和磷共掺杂的碳点(S,P-CQDs),以及硼、硫、磷三掺杂的碳点(B,S,P-CQDs)作为添加剂的应用。由于这些碳点含有大量官能团(如羟基(–OH)),它们能够与Pb²⁺离子发生相互作用,诱导生成PbO,同时也能与甲胺阳离子发生作用。卤化物空位密度的降低以及钙钛矿成核能的提高,有助于增大晶体尺寸并促进电荷传输。表面缺陷的钝化有效抑制了非辐射复合和离子迁移,这在缓解MAPbI₃薄膜的光降解过程中起着关键作用。在此基础上,引入S,P-CQDs使器件的功率转换效率(PCE)从10%提升至15%,短路电流密度(Jsc)从14.4 mA cm⁻²增加至23.6 mA cm⁻²。与对照器件相比,添加双掺杂和三掺杂杂原子碳点的PSCs表现出更窄的效率分布。

English Abstract

Methylammonium lead iodide (MAPbI 3 )-based perovskite solar cells (PSCs) offer highly efficient photovoltaics. However, several disadvantages such as poor stability and possibility of defect formation reducing film quality have restricted its commercialization. In this work, we reported the synthesis of dual- and triple-hetero-atom-doped carbon quantum dots (CQDs) via hydrothermal method and their effect of use as additive on the performance of PSCs. The boron (B) and phosphorous (P)-doped CQDs (B,P-CQDs), sulphur (S) and P-doped CQDs (S,P-CQDs), and B, S, and P-doped CQDs (B,S,P-CQDs) additives were described. Since these CQDs have many functional groups including hydroxyl (–OH), they can easily interact with Pb ions leading to the formation of PbO, as well as interaction with methyl ammonium ions. A reduced halide vacancy density and an increased nucleation energy of perovskite enhance crystal sizes and charge transfer. The passivation of surface defects reduces non-radiative recombination and ion migration, which plays an important role in photodegradation of the MAPbI 3 films. Herein, the introduction of S,P-CQDs improved power conversion efficiency (PCE) from 10 to 15% and current density (J sc ) from 14.4 to 23.6 mA cm −2 . PSCs added with dual- and triple-hetero-atom-doped CQDs showed narrower efficiency distribution in comparison to the control devices.
S

SunView 深度解读

该碳量子点钝化技术可显著提升钙钛矿电池效率(10%→15%)和电流密度,对阳光电源SG系列光伏逆变器具有重要启示。通过缺陷钝化抑制非辐射复合和离子迁移,可改善组件光衰特性,提升MPPT追踪精度和系统发电量。该材料工程思路可借鉴至功率器件表面处理,优化SiC/GaN器件界面缺陷,降低开关损耗。建议iSolarCloud平台集成组件缺陷预测算法,结合钝化技术延长工商业光伏电站全生命周期效益。