← 返回
储能系统技术 储能系统 工商业光伏 ★ 5.0

一种基于FeS–MgO复合材料超级电容器的新型电化学刺激方法

A novel approach employing electrochemical stimulation based on synthesis of FeS–MgO composites supercapacitor

作者 Dost Muhammad · Sohail Ahmad
期刊 Journal of Materials Science: Materials in Electronics
出版日期 2025年1月
卷/期 第 36.0 卷
技术分类 储能系统技术
技术标签 储能系统 工商业光伏
相关度评分 ★★★★★ 5.0 / 5.0
关键词 过渡金属硫化物 超级电容器 储能性能 FeS/MgO复合纳米颗粒 水热法
语言:

中文摘要

当前能源环境下,快速工业扩张引发的能源危机日益加剧,使得开发先进的储能系统成为必要。基于过渡金属硫化物的氧化物因其优异的导电性和储能能力,成为超级电容器(SC)阴极材料的理想选择。本研究采用简单的水热合成法和湿化学法设计并制备了FeS/MgO复合纳米颗粒。与所制备的MgO纳米球(87 Fg⁻¹)和FeS纳米片(90 Fg⁻¹)相比,基于FeS/MgO复合纳米颗粒的电极在1 Ag⁻¹电流密度下表现出高达350 Fg⁻¹的比容量。此外,由于其协同效应、高比表面积、丰富的活性位点以及分级结构,FeS/MgO复合纳米颗粒展现出更优的倍率性能和良好的循环寿命,在3 Ag⁻¹电流密度下经过2000次循环后仍保持86%的容量。在宽电位窗口(−0.4–0.8 V)内工作的FeS/MgO//AC非对称超级电容器器件在1 Ag⁻¹下实现了98.3 Fg⁻¹的高比电容,表现出32.7 Wh kg⁻¹的优异能量密度和4980 W kg⁻¹的高功率密度。该发展为应对当代对高效且可持续储能技术的迫切需求提供了有力解决方案。FeS/MgO电极比电容的提升归因于Fe²⁺与Mg²⁺之间的协同作用,以及具有类似MgO形貌的纳米颗粒的存在,这些结构赋予FeS纳米片较大的比表面积并增强了导电性,凸显了FeS/MgO复合电极在超化学电容器中的有效性。FeS/ZnO复合超级电容器同样具备更高的比电容和优异的循环稳定性。FeS与ZnO之间的协同效应可提升能量密度和功率性能,从而为储能应用带来显著优势。

English Abstract

The growth in energy crises brought on by fast industrial expansion in the current energy environment makes the development of sophisticated energy storage systems necessary. The remarkable conductivity and storage capacity of transition-metal sulfide-based oxides make them the perfect choice for supercapacitor (SC) cathode materials. Straightforward hydrothermal synthesis and a wet chemical approach were employed to design and create FeS/MgO composite nanoparticles. Compared to as-prepared MgO nanospheres (87 Fg −1 ) and FeS nanosheets (90 Fg −1 ), the electrode based on the FeS/MgO composite nanoparticles demonstrated an ultrahigh specific capacity of 350 Fg −1 at 1 Ag −1 . Furthermore, because of their synergistic performance, high surface area with many active sites, and hierarchical structure, FeS/MgO composite nanoparticles demonstrated improved rate performance and a good life cycle, maintaining 86% of its capacity after 2000 cycles at 3 Ag −1 . Operating within a wide potential window (− 0.4–0.8 V), FeS/MgO//AC asymmetric supercapacitor device produced a high capacitance of 98.3 Fg −1 at 1 Ag −1 , an outstanding energy density of 32.7 Wh kg −1 , and a high power density of 4980 W kg −1 . This development offers a strong response to the contemporary era’s pressing need for effective and sustainable energy storage. The FeS/MgO electrode’s increased specific capacitance is attributed to the synergistic interaction between Fe 2+ and Mg 2+ , as well as the presence of nanoparticles with MgO-like morphology, which give the FeS nanoplates a significant surface area and enhance conduction, highlighting the effectiveness of the composite FeS/MgO electrode in ultrachemical capacitors. Enhanced specific capacitance and superior cycling stability are two benefits of FeS/ZnO composite supercapacitors. Energy storage applications can benefit from the synergistic effects of FeS and ZnO, which enhance energy density and power performance.
S

SunView 深度解读

该FeS-MgO复合超级电容器技术展现出350 Fg⁻¹的超高比容量和32.7 Wh/kg能量密度,对阳光电源ST系列储能变流器和PowerTitan系统具有重要参考价值。其2000次循环后86%容量保持率可启发我们优化储能系统的功率缓冲单元设计,特别适用于工商业光伏场景中的高频充放电应用。复合材料的协同效应机制可为SiC/GaN功率器件的散热材料改进提供思路,提升PCS系统功率密度和循环寿命,增强iSolarCloud平台的预测性维护能力。