← 返回
光伏发电技术 储能系统 工商业光伏 ★ 5.0

氧化石墨烯增强的倒置MAPbI3钙钛矿太阳能电池:效率和长期稳定性的提升

Graphene oxide-enhanced inverted MAPbI3 perovskite solar cells: improvements in efficiency and long-term stability

语言:

中文摘要

钙钛矿太阳能电池(PSC)由于具有高功率转换效率(PCE)、可调的光电性能以及低成本的制备工艺,成为一种极具前景的光伏技术。尽管该技术在研发过程中取得了快速进展,但其商业化仍受到环境不稳定性的限制,包括在湿气、高温和持续光照条件下的降解问题。本研究探讨了将氧化石墨烯(GO)作为缺陷钝化和防潮材料引入甲基铵铅碘(MAPbI3)基PSC中,以应对上述挑战。经GO处理的器件实现了最高24%的PCE,并且填充因子(FF)相比未处理器件提升了8%,表明电荷传输性能得到增强,复合损失显著减少。在持续光照下的稳定性测试显示,经过GO处理的器件在1000小时后仍保持其初始PCE的50%以上,而未处理器件则几乎完全退化。此外,在100%湿度条件下,处理后的器件仍能维持其初始PCE的98%以上,而未处理器件的性能则降至初始值的95%以下。这些结果突显了GO兼具缺陷钝化和环境阻隔的双重功能,显著提升了PSC的工作效率和长期耐久性。本研究为发展可扩展且可靠的钙钛矿太阳能电池技术提供了有效路径,有助于推动下一代光伏技术的进步。

English Abstract

Perovskite Solar Cells (PSC) are a promising photovoltaic technology due to their high Power Conversion Efficiencies (PCE), tunable optoelectronic properties, and cost-effective fabrication. Despite rapid progress in their development, commercialization is hindered by environmental instability, including degradation under moisture, heat, and prolonged illumination. This study investigates the integration of Graphene Oxide (GO) as a defect passivation and moisture-resistant material to address these challenges in Methylammonium Lead Iodide (MAPbI 3 )-based PSC. The treated devices achieved a peak PCE of 24 and an 8% improvement in Fill Factor (FF) compared to untreated devices, showcasing enhanced charge transport and reduced recombination losses. Stability tests under continuous illumination demonstrated that GO-treated devices retained over 50% of their initial PCE after 1000 h, while untreated devices exhibited near-complete degradation. Moreover, under 100% humidity conditions, treated devices maintained over 98% of their initial PCE, while untreated devices degraded below 95%. These findings highlight the dual functionality of GO as a defect passivator and environmental barrier, significantly improving both the operational efficiency and long-term durability of PSCs. The results provide a pathway for scalable and reliable PSC technologies that contribute to the advancement of next-generation photovoltaics.
S

SunView 深度解读

该钙钛矿电池氧化石墨烯钝化技术对阳光电源SG系列光伏逆变器及分布式系统具有重要启示。研究显示GO处理使PCE达24%、填充因子提升8%,这与我司MPPT优化算法协同可进一步提升系统效率。其1000小时光照稳定性及高湿环境下98%性能保持率,为工商业光伏长期可靠运行提供材料层面解决方案。该缺陷钝化思路可借鉴至功率器件SiC/GaN界面优化,降低开关损耗。建议跟踪钙钛矿-晶硅叠层技术,结合iSolarCloud平台进行新型组件性能预测性维护算法开发,推动下一代高效光伏系统商业化落地。