← 返回
新型可充电氯离子水系电池的构建
The construction of a new type of rechargeable Cl− aqueous ion battery
| 作者 | Mingyang Cao · Mingqiang Li · Ning Wang |
| 期刊 | Journal of Materials Science: Materials in Electronics |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 36.0 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 GaN器件 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 氯离子电池 复合正极材料 Cl−嵌入/脱出 循环稳定性 结构完整性 |
语言:
中文摘要
氯离子电池(CIBs)具有高的理论体积能量密度,并且利用丰富的含氯前驱体,使其成为下一代储能系统的有前途的候选者。然而,其实际应用受到电极材料循环稳定性差和结构退化的阻碍。本研究开发了一种复合正极材料,将普鲁士蓝类似物、二氧化锰(MnO2)和五氧化二钒(V2O5)相结合,并将其与碱性水系电解质配对,组装成CIB体系。优化后的电池实现了160 mAh/g的最大比容量,并表现出优异的循环稳定性,在经历初始活化过程后,经过1100次循环仍能保持130 mAh/g的比容量。通过对比电化学测试和材料表征进行的机理研究表明,在充放电循环过程中原位形成了近似化学式为VxMny[Fe(CN)6]z·nH2O的三元过渡金属六氰合铁酸盐晶相。该晶相展现出增强的结构稳定性,并促进了三维电子传输路径。本工作提出了一种通过合理设计电极材料来开发高性能可充电氯离子电池的有效策略。
English Abstract
Chloride-ion batteries (CIBs) exhibit high theoretical volumetric energy density and utilize abundant chlorine-containing precursors, rendering them promising candidates for next-generation energy storage systems. However, their practical implementation is hindered by poor cycling stability and structural degradation of electrode materials. This study developed a composite cathode material integrating Prussian blue analogs, manganese dioxide (MnO 2 ), and vanadium pentoxide (V 2 O 5 ). This cathode was paired with an aqueous alkaline electrolyte to assemble the CIB system. The optimized battery delivered a Maximum specific capacity of 160 mAh/g and demonstrated exceptional cycling stability, maintaining 130 mAh/g after 1100 cycles following an initial activation process. Mechanistic investigations through comparative electrochemical testing and material characterization revealed the in situ formation of a ternary transition metal hexacyanoferrate phase with the approximate formula V x Mn y [Fe(CN) 6 ] z ·nH 2 O during cycling. This crystalline phase exhibited enhanced structural stability and facilitated three-dimensional electron transport pathways. This work presents a viable strategy for developing high-performance rechargeable chloride-ion batteries through rational electrode design.
S
SunView 深度解读
该氯离子电池技术展现的160 mAh/g比容量和1100次循环稳定性,为阳光电源储能系统提供新型电池技术路径参考。其三元过渡金属六氰合铁酸盐相的原位形成机制,可启发ST系列PCS和PowerTitan储能系统的电池管理策略优化。水系碱性电解质的安全特性与阳光电源ESS解决方案的安全设计理念高度契合,该复合正极材料的结构稳定性研究可为储能电池热管理和循环寿命预测模型提供理论支撑,助力iSolarCloud平台的预测性维护算法升级。