← 返回
光伏发电技术 工商业光伏 ★ 4.0

结构进步、界面工程对钙钛矿/硅 tandem 太阳能电池运行稳定性和商业可行性的影响

Impact of structural advancements interface engineering operational stability and commercial viability of perovskite/silicon tandem solar cells

作者 Muhammad Adnan · Zobia Irsh · Jongchul Lim
期刊 Solar Energy
出版日期 2025年1月
卷/期 第 286 卷
技术分类 光伏发电技术
技术标签 工商业光伏
相关度评分 ★★★★ 4.0 / 5.0
关键词 钙钛矿/硅叠层太阳能电池 稳定性 功率转换效率 晶体硅 发展
语言:

中文摘要

摘要 钙钛矿/硅 tandem 太阳能电池(PSTSCs)的发展已成为提高晶体硅太阳能电池(c-Si)运行稳定性和功率转换效率(PCE)的一种有前景且具有成本效益的替代方案。在过去的十年中,通过在不同c-Si衬底上采用多种真空和溶液驱动的钙钛矿加工方法,已在实验室中实现了高效tandem结构的制备。然而,要实现从实验室级原型向具有商业可行性的产品的跨越,PSTSCs仍面临诸多重大挑战,包括稳定性与可靠性问题,以及由宽带隙钙钛矿中的电压亏损导致的效率降低。此外,电荷复合层缺乏标准化,且在各层之间实现均匀薄膜沉积也存在困难。本综述总结了可扩展的制备工艺、界面修饰、应变管理、离子迁移、钙钛矿的相稳定性、电流失配带来的不利影响、运行稳定性及效率提升等方面的最新进展,并为PSTSCs的商业化提供了深入见解。

English Abstract

Abstract The development of perovskite/silicon tandem solar cells (PSTSCs) has emerged as a promising and cost-effective alternative to enhance the operational stability and power conversion efficiency (PCE) of crystalline silicon solar cells (c-Si). Over the last ten years, advancements have been achieved in fabricating highly efficient tandem structures in the lab using various vacuum and solution-driven perovskite processing methods applied on different c-Si substrates. However, to make the leap from lab-scale prototypes to commercially viable products, PSTSCs encounter significant challenges, including stability and reliability issues, along with reduced efficiency stemming from a voltage deficit in wide bandgap perovskites. Also, there is a lack of standardization in charge recombination layers and difficulties in achieving uniform thin-film deposition across each layer. This review offers advancements including scalable fabrication protocols, interface modifications, strain management, ion migration, phase stability of perovskites, detrimental effects due to current mismatching, operational stability, and efficiency enhancement, and provides insights toward commercializing PSTSCs.
S

SunView 深度解读

钙钛矿/硅叠层电池技术对阳光电源SG系列光伏逆变器具有重要前瞻价值。该技术通过宽带隙材料提升光电转换效率,但存在电压缺陷和电流失配问题,这与我司MPPT优化算法和1500V高压系统的技术方向高度契合。文中提出的界面工程、应变管理和离子迁移控制,可为我司三电平拓扑结构的功率器件热管理提供借鉴。建议结合iSolarCloud平台开发针对新型叠层组件的智能运维算法,提前布局下一代高效光伏系统的控制策略与可靠性测试标准,抢占工商业光伏技术制高点。