← 返回
光伏发电技术 组串式逆变器 地面光伏电站 ★ 5.0

基于最优清洗调度的印度大型光伏电站非均匀积灰损失评估及性能提升策略

Estimation of non-uniform soiling loss in a utility-scale PV plant in India and strategies for enhanced performance through optimal cleaning schedules

作者 Shoubhik De · Narendra S. Shiradkar · Anil Kottantharayil
期刊 Solar Energy
出版日期 2025年1月
卷/期 第 290 卷
技术分类 光伏发电技术
技术标签 组串式逆变器 地面光伏电站
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Analyzed non-uniform soiling for a PV plant in India using string-level SCADA data.
语言:

中文摘要

摘要 积灰显著影响光伏(PV)系统的效率,尤其是在印度等粉尘沉积严重的地区。在大型光伏电站中,空间上的非均匀积灰问题尤为突出,电站某些区域的发电损失高于其他区域,从而增加了运维管理的复杂性。本研究分析了位于印度南部的一座50 MWp大型光伏电站的组串级SCADA数据,该电站被划分为多个区域,用于生成详细的积灰分布图。基于这些分布图,我们提出了组串级优化和区域级优化两种清洗方法。组串级优化方法采用四个特定的清洗阈值,以确定各区域内最具经济效益的清洗区域;而区域级优化方法则旨在简化清洗流程、提升光伏电站性能及资源利用效率。此外,与以往研究不同,本分析还考虑了直流电缆损耗,进一步提高了积灰影响评估的精确性。我们将所提出方法产生的清洗收益与实际记录的清洗操作所产生的收益进行了比较。同时,通过调整太阳能光伏发电电价和清洗成本,开展了敏感性分析,以评估不同清洗策略的经济可行性。结果表明,85%的清洗阈值最具经济性,特别是在光伏发电价格持续下降的背景下。研究结果表明,基于积灰数据制定结构化的清洗计划可显著提升光伏电站的运行性能和盈利能力。该方法可在类似的光伏电站中推广应用,助力印度不断发展的光伏产业,最终帮助该国成为全球太阳能领域的领导者。

English Abstract

Abstract Soiling significantly impacts the efficiency of photovoltaic (PV) systems, especially in regions with heavy dust deposition like India. The issue is exacerbated by spatially non-uniform soiling in utility-scale PV plants, where certain areas of the plant experience higher losses than others, complicating maintenance efforts. In this study, we analysed string-level SCADA data from a 50 M W p utility-scale PV plant in South India divided into several zones to create detailed soiling maps. Using these maps, we developed both string-optimized and zone-optimized cleaning methodologies. The string-optimized approach utilized four specific cleaning thresholds to help determine the most profitable cleaning areas in each zone, while the zone-optimized approach aimed to streamline cleaning processes, enhance PV plant performance, and resource efficiency. Additionally, unlike previous studies, this analysis accounted for DC cabling losses, further refining the evaluation of soiling impact. The results in-terms of cleaning profit generated were compared with the same made by actual logged cleaning. Additionally, we performed a sensitivity analysis by varying solar PV electricity tariffs and cleaning costs to evaluate the economic viability of different cleaning strategies. The analysis indicated that the 85% cleaning threshold is the most economical, particularly as PV electricity prices continue to decline. Our findings suggest that structured cleaning schedules based on soiling data can significantly improve PV plant performance and profitability. This approach can be replicated in similar PV plants to support India’s growing PV sector, ultimately helping the country become a global leader in solar energy.
S

SunView 深度解读

该研究针对印度大型地面电站的非均匀积灰损失分析,对阳光电源SG系列组串式逆变器及iSolarCloud平台具有重要应用价值。研究基于组串级SCADA数据绘制积灰地图并优化清洁策略,可直接集成到iSolarCloud智能运维平台,结合SG逆变器的多路MPPT优化技术,实现组串级发电损失精准识别。建议将85%清洁阈值算法嵌入预测性维护模块,通过DC线损修正模型提升印度等高积灰地区电站的发电效率和经济性,支撑阳光电源在南亚市场的1500V大型地面电站解决方案推广。