← 返回
InN/InGaN多层量子点中的光吸收与光伏性能:限制势、铟组分和内建电场的影响
Optical absorption and photovoltaic performance in InN/InGaN multilayer quantum dots: Effects of confinement, in-fraction, and built-in electric field
语言:
中文摘要
摘要 本研究探讨了限制势、铟组分以及内建电场对多层InN/InGaN量子点光学与光伏特性的影响。采用有效质量近似方法并结合变分法求解薛定谔方程,分析了量子点的核层与壳层尺寸以及铟组分变化对能级结构、吸收光谱和太阳能电池性能的影响。结果表明,在内层增加铟组分会因限制效应减弱而降低载流子能级,这一现象在核半径较小的结构中尤为显著。较薄的初始壳层有助于提高光电流和能量转换效率。计算得到的吸收系数随着核层和壳层尺寸的增大出现蓝移现象,证实了强烈的量子限制效应。此外,更强的限制效应和内部电场会导致更高的能量吸收峰,但其强度有所降低。这些结果突显了优化设计的InN/InGaN量子点结构在高效光电子和光伏应用中的潜力。
English Abstract
Abstract This study investigates the impact of the confinement potential, indium fraction, and internal electric fields on the optical and photovoltaic properties of multilayer InN/InGaN quantum dots . Using the effective mass approximation and a variational method to solve the Schrödinger equation, we analyze how core, shell dimensions, and In-fraction variations affect energy levels, absorption spectra , and solar cell performance. The results show that increasing In-fraction in the inner layer lowers carrier energy levels due to reduced confinement, particularly in structures with small core radii . A thinner initial shell enhances the photocurrent and energy-conversion efficiency. The calculated absorption coefficients exhibit a blue shift with increasing core and shell size, confirming strong quantum confinement effects . Furthermore, stronger confinement and internal electric fields lead to higher energy absorption peaks with reduced intensity. These findings highlight the potential of optimized InN/InGaN quantum dot architectures for efficient optoelectronic and photovoltaic applications.
S
SunView 深度解读
该InN/InGaN量子点光伏技术研究对阳光电源SG系列光伏逆变器及MPPT优化具有重要参考价值。通过优化量子限域效应和铟组分配比可提升光吸收效率和能量转换性能,为下一代高效光伏电池材料选型提供理论依据。其蓝移特性和强量子限域效应可拓宽光谱响应范围,提升逆变器在弱光条件下的MPPT追踪精度。同时,该研究中的内建电场调控机制可为阳光电源GaN功率器件的载流子输运优化提供设计思路,助力三电平拓扑和高频开关应用的效率提升。