← 返回
规模、储热容量和热传输损失对利用聚光太阳能热能供应高温工业过程热的 techno-economics 影响
The effect of scale, storage capacity and thermal transmission losses on the techno-economics of supplying high-temperature industrial process heat with concentrated solar thermal energy
| 作者 | Leok Leea · Philip Ingenhovenab · Woei Sawab · Graham J.Nathana |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 299 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 工商业光伏 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Cost of energy from concentrated solar is ∼ 27 USD/GJ to delivery heat at 1100 °C. |
语言:
中文摘要
摘要 本文首次对利用聚光太阳能热能(CST)为工业过程提供高温热能进行了全面的技术经济性分析,该分析考虑了资源波动性,并涵盖了整个系统的各个方面,包括太阳能输入热功率规模、储热系统以及热传输管道。在当前系统中,选择空气作为传热流体(HTF),以便于对现有氧化铝厂进行改造;尽管未来系统可通过采用其他介质进一步降低成本。成本估算基于澳大利亚首套同类系统(FOAK)的当前建设成本,尚未计入学习率带来的成本下降效应。即便如此,估计聚光太阳能的能源成本约为27美元/GJ。此项针对采用聚光太阳能热技术(CST)输送高温工业过程热的技术经济评估表明,该技术在具有成本竞争力的价格水平下,具备为高温工业过程提供净零排放能源的巨大潜力。这些价格估算来源于一个完整系统的模型,该系统使用空气作为传热流体,以兼容现有的工业流程,包含规模介于50至450 MWth之间的太阳能膨胀涡旋接收器、填充床式储热系统、燃烧备用装置,以及将热空气输送到工艺端并返回的热传输系统。系统建模采用了瞬态太阳输入条件,基于一年内资源变化的数据,以10分钟时间步长进行求解,并设定太阳能倍数SM = 2.5。针对设计点处的输入太阳能规模(Q̇sol,DP)、传输距离(Ltr)、传输与储热系统的效率以及储热容量等参数的变化,分别计算了聚光太阳能系统的平准化供热成本(LCOH)和年均效率(ηann,CST)。基于LCOH,针对每个选定的输入太阳能规模,计算了储热容量、传输与储热系统效率的最佳组合。这揭示了可由CST系统提供的热量比例与投资成本之间的多种权衡关系,后者取决于所选储热和传输系统的尺寸及其保温材料用量。此外,尽管这些参数中的任意一项最优组合随各子系统而变化,但所有情景下LCOH的整体趋势仍可被归纳得出。结果表明,在FOAK设计基础上,CST系统可在450 MWth的规模下、跨越1 km的距离输送温度达1100 °C的高温空气,其LCOH低于29美元/GJ。此外,若CST系统能够与工业用热需求就近共址布置,间距小于125米,则LCOH可进一步降低至约27美元/GJ。最后,本文提出了两个相关性方程,用于估算在储热与传输系统配置适宜条件下、规模范围为50至450 MWth且SM = 2.5的CST系统的最小平准化供热成本(LCOHmin),可作为评估其他CST系统构型可行性的参考依据。
English Abstract
Abstract The first comprehensive techno-economic analysis of the supply of high temperature heat for an industrial process with concentrating solar thermal energy in a way that accounts for resource variability and also includes all aspects of the full system, including solar input thermal scale, thermal storage and transmission pipe-line. For the present system, air was chosen as the heat transfer fluid (HTF) to allow retrofitting into an existing alumina plant, although future systems could further lower costs with the use of different media. Costs were based on current construction costs in Australia for a first-of-a-kind system (FOAK), yet to include the learning rate for cost reduction. Even for this case, it is estimated that the cost of energy from concentrated solar is ∼27USD/GJ. This techno-economic assessment of delivering high-temperature industrial process heat using concentrated solar thermal technology (CST) identified strong potential for the technology to contribute net-zero emission energy sources for high temperature industrial process at cost-competitive prices. These price estimates were obtained from a model of a full system using air as the heat transfer fluid to be compatible with current industrial processes, comprising a solar expanding-vortex receiver at scales between 50 and 450 MW th , packed-bed thermal storage and a combustion backup, together with a thermal transmission system to transport the hot air to and from the process. The system was modelled with a transient solar input with one year of resource variability solved in 10-minute time intervals and a solar multiple SM = 2.5. Both the levelised cost of heat (LCOH) and the efficiency of the CST system ( η ann , C S T ) were calculated for systematic variation of the input solar scale at design point ( Q ̇ sol , D P ), transmission distance ( L tr ), effectiveness of the transmission and storage and storage capacity. Optimal combinations of the storage capacity, effectiveness of the transmission and storage were calculated for each chosen value of input solar scale, based on the LCOH. This reveals various trade-offs between the fraction of heat that can be supplied with the CST system and the cost of investment in the size and the amount of insulation chosen for both the storage and transmission systems. Furthermore, while the optimal combination of any of these parameters changes with each sub-system, an overall trend between the LCOH was derived for all scenarios. The results estimate that high temperature air at 1100 °C can be delivered by CST at a scale of 450 MW th over 1 km distance with LCOH below 29 USD/GJ, based on the FOAK design. In addition, if the CST system can be co-located with the process demand with less than 125 m apart, the LCOH can be reduced to ∼27 USD/GJ. Finally, 2 correlation equations to estimate the LCO H min of CST system with scale between 50 and 450 MW th and SM = 2.5 are proposed for the suitable condition of storage and transmission system, which can be used as a reference for estimating the viability of alternative configurations of CST systems.
S
SunView 深度解读
该研究聚焦光热储能与工业高温热能供应,对阳光电源储能系统具有重要参考价值。其热储能容量优化、传输损耗控制及经济性分析方法,可借鉴至ST系列储能变流器和PowerTitan系统的容量配置优化中。特别是其多参数协同优化思路(规模、储能容量、传输效率),与阳光电源工商业储能解决方案的系统级优化设计理念高度契合。研究中的LCOH成本模型可启发储能系统全生命周期成本评估方法,助力iSolarCloud平台开发更精准的储能经济性分析工具,为工商业客户提供科学的储能配置建议。