← 返回
基于蒙特卡洛方法与有限元分析的有机渗流太阳能电池光子通量模拟与比较
Simulation and comparison of photon flux in organic percolation solar cells using the Monte Carlo Method and Finite Element Analysis
| 作者 | Y.Y.Calderon-Seguraa · G.Burlak · P.Vargas-Chable · M.Tecpoyotl-Torres · M.Serrano · H.Villanuev · F.Alonso-Pecina · J.A.García-Pacheco |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 300 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | GaN器件 有限元仿真 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 太阳能电池 模拟框架 光子传输 热行为 氢化非晶硅 |
语言:
中文摘要
摘要 太阳能电池——特别是有机光伏器件——中的低效率问题以及持续存在的能量损失机制,仍是太阳能研究领域面临的主要挑战。本研究提出了一种集成化的仿真框架,旨在改进太阳能电池内部光子传输和热行为的建模。在不同光子通量条件下,评估了氢化非晶硅(Si:H)的光伏性能与热性能。该方法结合了蒙特卡洛方法(MCM)、有限元法(FEM)以及一种基于链路的改进型蒙特卡洛(MMC)渗流算法,并应用于三维网格几何结构中。仿真结果表明,入射光子中有76.2%被吸收,14.1%被反射,9.7%透过器件。Si:H表现出优异的光伏性能,短路电流密度(Jsc)达到19.4 A/m²,开路电压(Voc)为0.86 V,填充因子(FF)为17.962%,功率转换效率(PCE)达18.382%。此外,热学仿真揭示了空间温度梯度与光子吸收密度之间存在强烈相关性。这些结果不仅验证了所提出的概率建模策略的有效性,也符合国际光伏组件认证标准。具体而言,本研究通过提供一种有效的数值工具来预测性能、热稳定性及结构可靠性,支持了Firman等人(2022年)提出的指导方针,而这些要素在先进光伏技术的认证与审批过程中至关重要。
English Abstract
Abstract The low efficiency and persistent energy loss mechanisms in solar cells—particularly in organic photovoltaic devices—remain major challenges in the field of solar energy research. This study presents an integrated simulation framework aimed at improving the modeling of photon transport and thermal behavior within solar cells. The photovoltaic and thermal performance of hydrogenated amorphous silicon (Si:H) is evaluated under varying photon flux conditions. The approach combines the Monte Carlo Method (MCM), the Finite Element Method (FEM), and a link-based Modified Monte Carlo (MMC) percolation algorithm, applied within a three-dimensional mesh geometry. Simulation results show that 76.2 % of incident photons are absorbed, 14.1 % are reflected, and 9.7 % are transmitted through the device. Si:H exhibited high photovoltaic performance, reaching a short-circuit current density (Jsc) of 19.4 A/m 2 , an open-circuit voltage (Voc) of 0.86 V, a fill factor (FF) of 17.962 %, and a power conversion efficiency (PCE) of 18.382 %. Additionally, thermal simulations revealed spatial temperature gradients strongly correlated with photon absorption density. These findings not only validate the proposed probabilistic modeling strategy but also align with international standards for photovoltaic module qualification. Specifically, the work supports the guidelines described by Firman et al. (2022) by providing an effective numerical tool for predicting performance, thermal stability, and structural reliability—critical elements in the certification and approval processes of advanced photovoltaic technologies.
S
SunView 深度解读
该光子传输与热行为仿真技术对阳光电源SG系列光伏逆变器及组件选型具有重要参考价值。研究中Si:H材料18.382%的转换效率及热梯度分布特性,可指导我司1500V系统的MPPT优化算法改进,提升光子吸收率建模精度。蒙特卡洛与有限元耦合方法可应用于PowerTitan储能系统的热管理仿真,优化ST系列PCS功率器件散热设计。该概率建模策略为iSolarCloud平台的性能预测模块提供理论支撑,助力光伏电站全生命周期可靠性评估与预测性维护。