← 返回
光伏发电技术 GaN器件 ★ 5.0

用于新兴光伏器件中电荷传输层的低维半导体纳米杂化材料

Low-dimensional semiconductor nanohybrids for charge transport layers towards emerging photovoltaics

作者 Jiahua Konga1 · Maziar Jafarib1 · Yixiao Huang · Qinggang Houa · Keke Wanga · Mohamed Siajc · Jianguo Tanga · Zhonglin Dua
期刊 Solar Energy
出版日期 2025年1月
卷/期 第 300 卷
技术分类 光伏发电技术
技术标签 GaN器件
相关度评分 ★★★★★ 5.0 / 5.0
关键词 光伏 钙钛矿 有机太阳能电池
语言:

中文摘要

摘要 近年来,钙钛矿和有机太阳能电池等新兴光伏技术展现出显著的光电转换效率(PCE),然而其性能与稳定性在很大程度上依赖于高效的电荷传输层(CTLs)。由于具备可调的光电特性、增强的载流子迁移率以及优异的界面工程能力,包括量子点(0维)、纳米线/纳米管(1维)和纳米片(2维)在内的低维半导体纳米杂化材料,已成为下一代电荷传输层的有力候选者。本文系统综述了低维半导体纳米杂化材料在电荷传输层中的最新研究进展,重点聚焦于其结构设计、电荷传输机制及其在新兴光伏器件中提升性能的作用。我们讨论了优化纳米杂化基电荷传输层的关键策略,如能带排列调控、缺陷钝化和形貌控制,并阐明这些策略在提高电荷提取效率、抑制复合损失以及增强器件稳定性方面的重要作用。此外,本文还探讨了当前在可扩展性、界面相容性以及长期运行耐久性方面仍存在的挑战。最后,我们展望了未来的研究方向,包括可规模化且低成本的制备方法、基于机器学习的材料发现,以及面向高效率、高稳定性光伏器件的多功能纳米杂化结构设计。本综述旨在为下一代太阳能能量转换技术中先进电荷传输层的理性设计提供有价值的科学指导。

English Abstract

Abstract Emerging photovoltaics, such as perovskite and organic solar cells, have demonstrated remarkable power conversion efficiencies (PCEs), yet their performance and stability heavily rely on efficient charge transport layers (CTLs). Low-dimensional semiconductor nanohybrids, including quantum dots (0D), nanowires/nanotubes (1D), and nanosheets (2D), have recently emerged as promising candidates for next-generation CTLs, due to their tunable optoelectronic properties, enhanced charge carrier mobility, and superior interfacial engineering capabilities. This review comprehensively summarizes the latest advancements in low-dimensional semiconductor nanohybrids for the CTLs, focusing on their structural design, charge transport mechanisms, and performance enhancement in emerging photovoltaic devices. We discuss key strategies for optimizing nanohybrid-based CTLs, such as band alignment engineering, defect passivation, and morphological control, while highlighting their roles in improving charge extraction, reducing recombination, and enhancing device stability. Furthermore, we address the remaining challenges in scalability, interfacial compatibility, and long-term operational durability. Finally, we provide perspectives on future research directions, including scalable and low-cost fabrication, machine learning-assisted material discovery, and multifunctional nanohybrid architectures for high-efficiency, stable photovoltaics. This review aims to offer valuable insights into the rational design of advanced CTLs for next-generation solar energy conversion technology.
S

SunView 深度解读

该低维半导体纳米杂化材料技术对阳光电源光伏逆变器及储能系统具有重要应用价值。文章聚焦的电荷传输层优化策略,如能带工程、缺陷钝化等,可启发SG系列逆变器在钙钛矿等新型光伏组件适配中的MPPT算法优化。量子点、纳米线等材料的高载流子迁移率特性,与公司SiC/GaN功率器件的低损耗理念契合,可为三电平拓扑及高频开关技术提供材料层面的协同创新思路。此外,其界面工程能力对提升ST系列储能变流器的长期运行稳定性及iSolarCloud平台的预测性维护模型具有参考意义,助力构建高效稳定的光储一体化解决方案。