← 返回
光伏发电技术 储能系统 可靠性分析 ★ 5.0

关于温度系数、光伏故障之间关系的综合分析及其与其他光伏参数相关性的研究

Comprehensive analysis and insights into the relationship between temperature coefficients, PV failures, and investigating their correlation with other PV parameters

作者 N.Belhaouas · H.Hafdaoui · J.M.Nunzi · S.Khatir · D.Ernst · F.Mehareb · N.Madjoudj · H.Assem · D.Saheb-Kouss
期刊 Solar Energy
出版日期 2025年1月
卷/期 第 301 卷
技术分类 光伏发电技术
技术标签 储能系统 可靠性分析
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Comprehensive TC analysis across 5 PV module types using best & worst samples.
语言:

中文摘要

摘要 确保光伏(PV)组件的长期性能和可靠性对于降低维护成本以及支持大规模太阳能部署至关重要——特别是在阿尔及利亚等地区,太阳能在其国家能源转型战略中发挥着关键作用。在诸多关键性能指标中,温度系数(TCs)能够提供有关光伏参数如何响应温度变化的重要信息。尽管制造商通常会在产品数据手册中提供温度系数,但其作为识别和理解失效机理诊断工具的潜力仍未得到充分探索。本文对温度系数与光伏组件退化之间的关系进行了全面分析,旨在提升故障检测能力和性能评估水平。本研究选取了五种不同类型、在地中海气候条件下户外暴露4至30年的光伏组件,并依据IEC 61215及相关标准开展了一系列检测,包括目视检查与红外热成像、I–V曲线测量、电气参数评估以及内阻测试。此外,本文还引入了新的差分比值以改进比较分析方法。分析重点聚焦于数据手册中提供的三个关键温度系数:最大功率温度系数(TCPmax)、开路电压温度系数(TCVoc)和短路电流温度系数(TCIsc),同时也探讨了其他衍生系数的变化特性,如最大工作电压温度系数(TCVmpp)、最大工作电流温度系数(TCImpp)以及填充因子温度系数(TCFF)。结果表明,光学类故障(如变色、脱层)和非光学类故障(如热点、腐蚀)均会影响温度系数的行为特征。特别是TCPmax对故障的发生及其分布表现出高度敏感性,而TCVoc则与观测到的热分布密切相关。虽然TCIsc在户外条件下的测量不确定性较高,但其退化趋势似乎与光学故障相关联。研究发现表明,温度系数除了传统的应用之外,还可作为特定退化机制的实用指示指标,为现有的故障检测或诊断技术提供一种补充或替代手段。本文建议制造商扩展数据手册中的技术规格,增加更多温度系数参数,以增强光伏组件故障检测能力,并实现更准确的性能对比。论文还建议制造商扩充数据手册中所列的温度系数内容,以便更好地进行光伏模块故障检测及温度系数数值间的比较。未来的研究将致力于通过更大规模的数据集以及在不同环境条件下更精确的不确定度量化来进一步完善该方法体系。

English Abstract

Abstract Ensuring long-term performance and reliability of photovoltaic (PV) modules is essential for minimizing maintenance costs and supporting large-scale solar deployment — particularly in regions like Algeria, where solar energy plays a key role in national energy transition strategies. Among the key performance indicators, temperature coefficients (TCs) offer valuable insights into how PV parameters respond to temperature changes. While TCs are routinely included in manufacturer datasheets, their potential use as diagnostic tools for identifying and understanding failure mechanisms remains insufficiently explored. This work presents a comprehensive analysis of the relationship between temperature coefficients and PV module degradation, with a focus on enhancing failure detection and performance evaluation. Five PV module types, exposed to real outdoor conditions under Mediterranean climatic conditions for periods ranging from 4 to 30 years, were investigated through a series of inspections conducted in accordance with IEC 61215 and related standards. These included visual and thermal inspections, (I–V) curve measurements, electrical parameter assessments, and internal resistance evaluations. Furthermore, new differential ratios are introduced to improve comparative analysis. The analysis emphasizes three key datasheet-provided TCs: maximum power ( T C P m a x ), open-circuit voltage ( T C V o c ), and short-circuit current ( T C I s c ), while also drawing insights into derived coefficients such as maximum voltage ( T C V m p p ), maximum current ( T C I m p p ), and fill factor ( T C F F ). Results reveal that both optical (e.g., discoloration, delamination) and non-optical (e.g., hot spots, corrosion) failures influence TC behavior. In particular, T C P m a x shows strong sensitivity to failure occurrence and distribution, while T C V o c closely correlates with observed thermal distribution. Although T C I s c shows higher measurement uncertainty under outdoor conditions, its degradation appears linked to optical failure. The findings suggest that TCs, beyond their conventional use, can serve as practical indicators of specific degradation mechanisms, offering a complementary or alternative approach to existing failure detection or diagnostic techniques. The paper also recommends that manufacturers expand datasheet specifications to include additional temperature coefficients (TCs) to enhance PV module failure detection and enable more accurate performance comparisons. The paper also recommends that manufacturers expand datasheet specifications to include additional TCs for enhanced PV module failure detection and TCs values comparison. Future work will aim to refine this methodology through expanded datasets and more precise uncertainty quantification under varying environmental conditions.
S

SunView 深度解读

该温度系数诊断技术对阳光电源SG系列光伏逆变器及iSolarCloud智慧运维平台具有重要应用价值。研究揭示温度系数(TCPmax、TCVoc、TCIsc)可作为组件失效早期预警指标,可集成至iSolarCloud的预测性维护算法中,通过IV曲线实时监测与热成像数据融合,实现光学失效(脱层、变色)和非光学失效(热斑、腐蚀)的精准识别。结合SG逆变器的多路MPPT优化技术,可针对性调整失效组件串的工作点,延缓电站性能衰减。建议将温度系数动态监测纳入逆变器诊断功能,为25年全生命周期电站资产管理提供数据支撑,特别适用于地中海、中东北非等高温高辐照地区的大型光伏电站。