← 返回
光伏发电技术 储能系统 工商业光伏 ★ 5.0

全硫族化合物传输层实现高效稳定的FAPbI3钙钛矿太阳能电池

Fully chalcogenide transport layers enable efficient, stable FAPbI3 perovskite solar cells

作者 Sanaa Ammari · Mohamed All · Naoufal Ennouhi · Boubker Fares
期刊 Solar Energy
出版日期 2025年1月
卷/期 第 301 卷
技术分类 光伏发电技术
技术标签 储能系统 工商业光伏
相关度评分 ★★★★★ 5.0 / 5.0
关键词 High-performance optimization and Analysis of Perovskite FAPbI3.
语言:

中文摘要

摘要 钙钛矿太阳能电池(PSCs)因其兼具高功率转换效率和低成本制备工艺,现已被公认为光伏研究中的关键方向。然而,该技术的商业化应用仍受到标准电子传输材料(ETM)TiO2和空穴传输材料(HTM)Spiro-OMeTAD的限制,这些材料存在稳定性、性能和成本方面的问题。在本研究中,我们采用SCAPS-1D模拟方法,系统探索了适用于基于甲脒铅碘(FA-based FAPbI3)器件的多种替代性传输层材料。首先通过复现TiO2/Spiro-OMeTAD参考器件25.6%的效率验证了模型的准确性,随后系统评估了大量电子传输层(ETLs)和空穴传输层(HTLs),并分析了它们对器件性能的影响。结果表明,以WS2作为电子传输层、CuGaSe2(CGSe)作为空穴传输层的组合为最优方案,该组合在不改变活性层的前提下,实现了更优的能级匹配、更高的载流子迁移率以及更低的复合损失。经优化后,该WS2/CGSe器件结构将模拟功率转换效率提升至26.55%以上。这两种材料均可通过可扩展的方法在低温下沉积,凸显其作为下一代钙钛矿太阳能电池稳定且低成本传输层的巨大潜力。

English Abstract

Abstract Perovskite solar cells (PSCs) are now recognized as pivotal in photovoltaic research that combine high power conversion efficiency with cost-effective fabrication processes. However, commercial deployment of this technology is still hindered by the standard electron-transport material (ETM) TiO 2 and the hole-transport material (HTM) Spiro-OMeTAD, which suffer from stability, performance, and cost issues. In the present work, we use SCAPS-1D simulations to explore a wide range of alternative transport layers for FA-based FAPbI 3 devices. After validating our model by reproducing the 25.6 % efficiency of a TiO 2 /Spiro-OMeTAD reference cell, we systematically evaluated a broad range of ETLs and HTLs and analysed their influence on device performance. The pairing of WS 2 as the electron transport layer and CuGaSe 2 (CGSe) as the hole transport layer emerged as the most effective combination, delivering better energy-level alignment, higher charge mobility, and lower recombination without altering the active layer. Once optimized, this WS 2 /CGSe architecture increased the simulated power conversion efficiency to more than 26,55 %. Both materials can be deposited at low temperatures via scalable methods, underscoring their potential as stable, cost-effective transport layers for next-generation PSCs.
S

SunView 深度解读

该钨硫化物/硒化铜镓传输层技术为阳光电源SG系列光伏逆变器的上游组件效率提升提供新方向。26.55%的钙钛矿电池转换效率突破,结合低温可规模化制备工艺,可显著降低光伏系统度电成本。对PowerTitan储能系统而言,高效稳定的电池技术可提升充放电循环寿命。建议iSolarCloud平台集成新型组件性能监测算法,为未来钙钛矿商业化部署的MPPT优化策略提供数据支撑,助力1500V高压系统效率再提升。