← 返回
基于碳电极的CsPbBr3同质结太阳能电池的模拟研究以提升性能
Simulation study of carbon electrode based CsPbBr3 homojunction solar cells for enhanced performance
| 作者 | Weiwei Lia1 · Shumin Chenb1 · Dingshan Zheng · Han Pana · Nian Cheng |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 301 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | GaN器件 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 全无机钙钛矿太阳能电池 CsPbBr3 功率转换效率 器件模拟 空穴传输层 |
语言:
中文摘要
摘要 近年来,全无机钙钛矿太阳能电池(PSCs),特别是全溴化物CsPbBr3,受到了广泛关注。然而,目前实验报道的功率转换效率(PCEs)与CsPbBr3 PSCs的理论PCE之间仍存在较大差距。为了进一步优化CsPbBr3 PSCs的PCE提供指导,本研究采用SCAPS-1D软件进行了器件模拟。首先研究了无空穴传输层、仅含单一n型或p型CsPbBr3薄膜的CsPbBr3 PSCs,并将其模拟结果与实验数据进行了比较。随后构建了同时包含n型和p型CsPbBr3薄膜的CsPbBr3同质结太阳能电池结构。详细分析并讨论了p型CsPbBr3薄膜的厚度及其掺杂浓度对相应CsPbBr3 PSCs性能的影响。最终,当p型CsPbBr3薄膜的掺杂浓度为1 × 10^18 cm^−3时,在FTO/TiO2/n型CsPbBr3(700 nm)/p型CsPbBr3(100 nm)/碳器件结构中可实现最高达13.87%的优异PCE。
English Abstract
Abstract All-inorganic perovskite solar cells (PSCs), especially all bromide CsPbBr 3 , are attracting tremendous attention recently. However, currently there is a large efficiency gap between the experimentally reported power conversion efficiencies (PCEs) and theoretical PCE of CsPbBr 3 PSCs. To shed light on further optimizing the PCEs of CsPbBr 3 PSCs, device simulation using SCAPS-1D is carried out in this study. Hole transport layer free CsPbBr 3 PSCs with a single n-type or p-type CsPbBr 3 film are firstly studied and compared with those results from experiments. Then CsPbBr 3 homojunction solar cells using both n-type and p-type CsPbBr 3 films are further constructed. The influence of p-type CsPbBr 3 film thickness and doping concentration on the performances of the corresponding CsPbBr 3 PSCs are analyzed and discussed in detail. Finally, a champion PCE of 13.87 % could be obtained in FTO/TiO 2 /n-type CsPbBr 3 (700 nm)/p-type CsPbBr 3 (100 nm)/carbon device when the p-type CsPbBr 3 film is doped at a concentration of 1 × 10 18 cm −3 .
S
SunView 深度解读
该CsPbBr3全无机钙钛矿太阳能电池研究对阳光电源光伏产品线具有前瞻价值。研究通过同质结构优化实现13.87%转换效率,其碳电极低成本方案与我司SG系列组串式逆变器的高效MPPT算法形成互补。钙钛矿电池的高开路电压特性可优化1500V系统设计,降低BOS成本。该技术路线的稳定性提升方向可为iSolarCloud平台的组件性能预测模型提供新材料数据支撑,助力未来分布式光伏系统效率突破与智能运维升级。