← 返回
光伏发电技术 储能系统 可靠性分析 ★ 5.0

一种融合多模态扩散生成与轻量化分割的光伏缺陷智能诊断框架

A PV defect intelligent diagnosis framework integrating multimodal diffusion generation and lightweight segmentation

作者 Lei Xu · Jiale Xiao · Xiaoyu Ji · Yibo Zhang · Changyun Li · Yasong Wang
期刊 Solar Energy
出版日期 2025年1月
卷/期 第 301 卷
技术分类 光伏发电技术
技术标签 储能系统 可靠性分析
相关度评分 ★★★★★ 5.0 / 5.0
关键词 CAM-Diffuse based on binary-mask constraints and multimodal fusion.
语言:

中文摘要

摘要 确保光伏(PV)系统长期可靠性和效率需要精确且智能化的缺陷监测策略。为解决这一问题,本研究提出了一种创新的缺陷图像生成方法——CAM-Diffuse,该方法结合二值掩码约束与基于文本-视觉的多模态特征融合技术,能够生成高保真且可控的缺陷图像,有效扩充训练数据集,并提升模型的泛化能力。此外,本研究还提出了一种轻量级实例分割网络LightSegDETR。该网络集成了DGBlock模块,通过深度可分离卷积(DWConv)与幽灵卷积(GhostConv)相结合的方式优化计算效率;在网络的颈部结构中,采用DynamicGhost(动态自适应调整幽灵卷积)和AdaptiveWT(自适应小波高低频特征融合)技术进行特征融合;在网络头部,将自注意力机制与SEBAttention(一种多尺度双注意力策略)结合,实现联合自适应加权。相较于增强型基线模型,LightSegDETR在参数量(Params)和内存占用(RAM)上减少了50%,计算负载(GFLOPs)降低了34.4%,同时在精度方面实现了提升:mAP50detect、mAP50-95detect、mAP50seg和mAP50-95seg分别提高了1.1%、1.3%、1.0%和0.8%。LightSegDETR在Jetson Nano平台上达到28 FPS的推理速度,兼具最先进的精度与效率表现,能够支持鲁棒的实时边缘部署,在实际应用中展现出强大的边缘部署潜力以及低成本光伏性能监测前景。

English Abstract

Abstract Ensuring the long-term reliability and efficiency of photovoltaic(PV) systems requires accurate and intelligent defect monitoring strategies. To address these issues, this study proposes an innovative defect image generation method called CAM-Diffuse, which combines binary mask constraints with text-vision-based multimodal feature fusion. This method enables the generation of high-fidelity and controllable defect images, effectively expanding the training dataset and enhancing the model’s generalization ability.Furthermore, this study introduces LightSegDETR, a lightweight instance segmentation network. The network integrates the DGBlock module, which combines DWConv and GhostConv to optimize computational efficiency. In the neck of the network, DynamicGhost (dynamic adaptive adjustment of ghost convolution) and AdaptiveWT (adaptive wavelet high and low-frequency feature fusion) techniques are used for feature fusion. In the head, the self-attention mechanism is combined with SEBAttention (a multi-scale dual-attention strategy) to achieve joint adaptive weighting.Compared to the Enhanced Baseline, LightSegDETR reduces parameters (Params) and memory (RAM) by 50%, and computational load (GFLOPs) by 34.4%, while achieving improvements in accuracy: mAP50detect, mAP50-95detect, mAP50seg, and mAP50-95seg increase by 1.1%, 1.3%, 1.0%, and 0.8%, respectively. LightSegDETR achieves 28 FPS on Jetson Nano with state-of-the-art accuracy-efficiency, enabling robust real-time edge deployment, demonstrating strong potential for edge deployment and cost-effective PV performance monitoring in practical applications.
S

SunView 深度解读

该轻量化光伏缺陷诊断框架对阳光电源iSolarCloud智慧运维平台及SG系列逆变器具有重要应用价值。CAM-Diffuse多模态数据增强技术可优化我司MPPT算法的故障识别准确率,LightSegDETR网络在Jetson Nano边缘设备上实现28FPS实时检测,参数量降低50%,非常适合集成到ST储能系统和1500V光伏电站的边缘智能监控单元。其自适应小波特征融合与多尺度注意力机制可增强iSolarCloud预测性维护能力,降低电站运维成本,提升发电效率,为大规模光储电站提供低成本、高精度的智能诊断解决方案。