← 返回
漂浮式与地面安装光伏系统性能分析:一项实验研究
Performance analysis of floating and ground-mounted photovoltaic systems: An experimental study
| 作者 | Nitin Kumar · Rupendra Kumar Pachauri · Piyush Kuchhal · Khadiza Akter · Majed A.Alotaibic · Hasmat Malikd |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 302 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 地面光伏电站 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A novel approach is proposed for the formulation of floating and ground-mounted PV systems. |
语言:
中文摘要
摘要 光伏技术的快速发展推动了创新系统配置的需求,以提升能源发电效率。漂浮式光伏系统(FPV)已成为传统地面安装(GPV)系统的有前景替代方案。本研究开展了一项全面的季节性实验分析,比较漂浮式与地面安装系统的性能,特别聚焦于倾角优化以提高能源产出。每个系统分别设置在25°、30°、35°、40°和45°五种不同的倾角条件下。本工作在真实环境条件下进行,两个系统均暴露于相同的环境参数下,包括太阳辐照度、环境温度、组件温度、湿度和风速。漂浮系统中水冷效应被评估为影响温度相关效率的关键因素。研究结果表明,在测试期间,FPV组件的温度始终低于GPV组件,在25°倾角下FPV与GPV系统之间的最大温差达到4.2°C。具体而言,在25°倾角时,FPV组件实现了平均4.44 W的输出功率,而GPV为4.02 W;FPV组件的平均温度为26.01°C,GPV为28.38°C。测试结果验证了在测试期间,FPV系统在25°倾角下产生的能量最多。该研究强调了针对特定系统进行倾角优化对提升光伏装置性能的重要性。本研究通过推广经济、清洁和可持续的能源解决方案,为实现联合国可持续发展目标SDG 7作出贡献。在本研究中,FPV被发现相较于GPV具有更高的财务可行性和可持续性。FPV的初始投资较高,为₹1,05,50,000,但表现出更优的性能:单位装机容量发电量达1812 kWh/kW,性能比率为0.86(GPV为0.81),投资回收期为10.86年,短于GPV的11.64年。这些优势使FPV成为长期能源生产和财务可持续性方面更具吸引力的选择。SDG 7由联合国于2015年9月作为《2030年可持续发展议程》的一部分提出,旨在确保人人获得可负担、可靠和可持续的现代能源,并显著增加可再生能源的比例,同时提升能源效率。
English Abstract
Abstract The rapid growth of photovoltaic technology has driven the need for innovative system configuration to enhance the energy generation. Floating photovoltaic systems (FPV) has emerged as a promising alternative to traditional ground mounted (GPV) installations. This study presents a comprehensive experimental seasonal analysis to comparing the performance of floating and ground mounted systems with a specific focus on tilt angle optimization to enhance the energy generation. Each system is arranged at five different tilt angle such as 25°, 30°, 35°, 40°, 45°. This work is conducting under real environment conditions, where both systems is subjected to identical environmental parameters such as solar irradiance, ambient temperature, module temperature, humidity and wind speed. The influence of water cooling in floating system is evaluating as a critical factor affecting temperature related efficiency. The findings revel that FPV modules exhibited consistently lower temperatures than GPV modules during the test, with a maximum temperature differential of 4.2 °C observed at a 25° tilt angle between the FPV and GPV systems. Specifically, at a 25° tilt angle, FPV modules achieved an average power of 4.44 W compared to 4.02 W for GPV, with module temperatures averaging 26.01 °C for FPV and 28.38 °C for GPV. The test results validated that FPV systems generated the most energy at a 25° tilt angle during the test period. The study underscores the importance of system specific tilt angle optimization to enhance the performance of PV installations. This work contributes to achieving Sustainable Development Goal SDG 7 by promoting affordable, clean, and sustainable energy solutions. In this study, FPV is found to be a more financially viable and sustainable option compared to GPV. FPV offers a higher initial investment of ₹1,05,50,000, but demonstrates superior performance with an energy yield of 1812 kWh/kW, a better performance ratio of 0.86 compared to 0.81 for GPV, and a shorter payback period of 10.86 years compared to 11.64 years for GPV. These advantages make FPV a more attractive option for long-term energy generation and financial sustainability. SDG 7, established by the United Nations in September 2015 as part of the 2030 Agenda for Sustainable Development, aims to ensure universal access to affordable, reliable, and sustainable energy, while significantly increasing renewable energy share and enhancing energy efficiency.
S
SunView 深度解读
该浮式光伏研究对阳光电源SG系列逆变器和iSolarCloud平台具有重要价值。研究证实FPV系统因水冷效应温度降低4.2°C,功率提升10.4%,这要求逆变器具备更宽MPPT范围以捕获额外发电量。建议SG逆变器针对FPV场景优化温度补偿算法,并在iSolarCloud平台集成倾角-水温-发电量关联模型,实现FPV电站的精准倾角优化和预测性运维,提升系统PR值从0.81至0.86,缩短投资回收期至10.86年。