← 返回
通过SCAPS-1D模拟高效双结全无机钙钛矿叠层太阳能电池
Modeling of efficient dual-junction all-inorganic perovskite tandem cells via SCAPS-1D
| 作者 | Jothika Balasubramaniyan · Thangaraji Vasudevan · Govindaraj Rajamanickam · Lung-Chien Chenb |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 302 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 宽禁带半导体 GaN器件 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | Tandem-like CsPbI3/CsSnI3 bilayer enables broad-spectrum light harvesting. |
语言:
中文摘要
本研究利用SCAPS-1D对采用双层吸光结构的全无机、叠层结构启发的钙钛矿太阳能电池(PSC)进行了详细的仿真分析。研究评估了器件结构FTO/TiO2/CsPbI3/CsSnI3在有无空穴传输层(HTL)情况下的性能,并采用了金(Au)、银(Ag)、碳和CZTS等多种背电极材料。其中,CsPbI3(宽带隙)作为顶层吸光层,CsSnI3(窄带隙)作为底层吸光层,能够在宽光谱范围内实现高效的光吸收。在无需空穴传输层的结构中,实现了高达33.75%的功率转换效率(PCE)。此外,使用成本低廉且可持续的CZTS替代传统金属电极仍能保持优异的器件性能。结果表明,在不使用有机空穴传输层的情况下,依然可以实现高效的能带排列与载流子传输,从而在维持高效率的同时简化了器件结构。本工作突出了全无机、叠层结构启发的钙钛矿器件架构在可扩展、高效且环境友好型光伏技术中的应用潜力。
English Abstract
Abstract This investigation delivers a detailed SCAPS-1D simulation of all-inorganic, tandem-inspired perovskite solar cells (PSC) utilizing a two-layer absorber configuration. The device configuration FTO/TiO 2 /CsPbI 3 /CsSnI 3 was evaluated in the presence and absence of a hole transport layer (HTL), using various back contact materials such as gold (Au), silver (Ag), carbon, and CZTS. CsPbI 3 (wide bandgap) functions as the top absorber, while CsSnI 3 (narrow bandgap) serves as the bottom absorber, allowing strong light harvesting over a wide spectral range. A high-power conversion efficiency (PCE) of 33.75% was attained in the HTL-free configuration. Additionally, replacing conventional metal electrodes with cost-effective, sustainable CZTS maintained excellent device performance. These results demonstrate that efficient energy band alignment and charge transport are achievable without organic HTLs, simplifying the device structure while maintaining high efficiency. This work underscores the potential of all-inorganic, tandem-inspired perovskite architectures for scalable, efficient, and eco-friendly photovoltaic technologies.
S
SunView 深度解读
该全无机钙钛矿叠层电池技术对阳光电源SG系列光伏逆变器具有前瞻价值。33.75%的高转换效率和宽光谱吸收特性,可显著提升单位面积发电量,优化MPPT算法对高效组件的追踪策略。无HTL简化结构降低温度敏感性,有利于逆变器热管理设计。宽窄带隙协同吸收的能带工程思路,可启发SiC/GaN功率器件的异质集成方案,提升三电平拓扑效率。该技术为下一代高效光伏系统和iSolarCloud智能监控的发电预测模型提供新参数基准。