← 返回
基于帽层设计的AlGaN/GaN高电子迁移率晶体管电学性能研究
Study on electrical performance of AlGaN/GaN high electron mobility transistor based on cap layer design
语言:
中文摘要
摘要 本研究探讨了不同帽层对AlGaN/GaN高电子迁移率晶体管(HEMTs)电学特性的影响。通过对比制备的具有GaN和AlN帽层的AlGaN/GaN HEMTs,发现AlN帽层由于其优异的钝化效果和极化效应,能够提高二维电子气(2DEG)密度,从而获得更高的饱和电流,并使击穿电压从615 V(GaN帽层)提升至895 V(AlN帽层)。Sentaurus TCAD仿真结果验证了上述实验发现,表明AlN帽层器件中形成了更深的三角形量子势阱,导致2DEG电子密度达到1.19 × 10^13 cm^−2,高于GaN帽层器件的0.93 × 10^13 cm^−2。AlN帽层更大的能带隙提供了更有效的势垒,降低了电场强度,进而提高了击穿电压。此外,本文还提出了新型的AlN-AlGaN-GaN和GaN-AlGaN-AlN梯度帽层结构,以进一步提升击穿电压,最高可达1308 V。这些梯度结构能够平衡电场分布、抑制电子泄漏并改善电子输运特性,显著提升了器件性能。本研究凸显了AlN帽层及梯度帽层在下一代高性能HEMT器件中的应用潜力。
English Abstract
Abstract This study investigates the impact of different cap layers on the electrical properties of AlGaN/GaN high electron mobility transistors (HEMTs). By comparing the fabricated AlGaN/GaN HEMTs with GaN and AlN cap layers, it was found that AlN cap layer increases the two-dimensional electron gas (2DEG) density due to its superior passivation and polarization effects, yielding a higher saturation current and boosting breakdown voltage from 615 V (GaN) to 895 V (AlN). Sentaurus TCAD simulations confirm these findings, showing a deeper energy band triangular potential well in AlN-capped HEMTs, leading to a 2DEG electron density of 1.19 × 10 13 cm −2 , compared to 0.93 × 10 13 cm −2 for GaN-capped HEMTs. The larger energy band gap of AlN cap layer provides a more effective potential barrier, reducing electric field intensity and increasing breakdown voltage. Additionally, the novel AlN-AlGaN-GaN and GaN-AlGaN-AlN graded cap layers are proposed to further enhance breakdown voltage, reaching up to 1308 V. These graded structures balance the electric field, block electron leakage, and improve electron transfer, providing a significant performance boost. This study underscores the potential of AlN and graded cap layers for future high-performance HEMTs.
S
SunView 深度解读
该AlN帽层GaN HEMT技术对阳光电源功率器件应用具有重要价值。研究显示AlN帽层可将击穿电压提升至895V,梯度帽层结构更达1308V,2DEG密度提升28%。这为我司SG系列光伏逆变器、ST储能PCS及充电桩的GaN功率模块设计提供优化方向:通过改进帽层结构可提升器件耐压等级和导通性能,支持1500V高压系统;梯度帽层的电场调控机制可应用于三电平拓扑优化,降低开关损耗,提升PowerTitan等储能系统的功率密度和转换效率,增强产品竞争力。