← 返回
光伏发电技术 储能系统 ★ 5.0

用于并网光伏电站选址的分段变异粒子群优化算法

PSO with segmented mutation for site selection in grid-connected photovoltaic power generation system

作者 Xiao Zhang · Yujiang Chen · Linhui Cheng · Shasha Tian · Lu Liu
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 377 卷
技术分类 光伏发电技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 分段变异粒子群优化算法 光伏阵列选址 电力变压器 算法 光伏阵列
语言:

中文摘要

摘要 本文提出了一种新型的分段变异粒子群优化(SMPSO)算法,用于解决并网光伏发电系统规划阶段中光伏(PV)阵列场址与电力变压器场址的选址问题。光伏阵列和电力变压器的选址过程直接影响系统的发电效率与建设运行成本。然而,该选址任务对优化算法提出了严峻挑战。粒子群优化(PSO)是一种应用广泛的基于种群的优化器,具有众多应用场景。但由于标准PSO在处理选址问题时存在早熟收敛和易陷入局部最优的缺陷,本文提出一种分段变异的PSO算法:在迭代初期采用全局粒子变异操作以增强全局搜索能力;在迭代后期则对较优粒子实施约束变异和小规模变异操作,以提升局部精细搜索能力。通过对标准测试函数的优化结果进行对比分析,验证了该算法在多峰函数优化方面具有更优越的性能。此外,所设计的算法被成功应用于光伏阵列选址与电力变压器选址问题,并有效解决了实际工程中的复杂优化需求。实验所得实证结果表明,所提出的SMPSO算法在解的质量和收敛速度方面均优于其他对比的PSO算法。该算法的实施有望为光伏发电系统的设计提供更具成本效益的解决方案。

English Abstract

Abstract This paper presents a novel Segmented Mutation Particle Swarm Optimization (SMPSO) algorithm to address the selection of photovoltaic (PV) array sites and electrical transformer sites in the planning phase of grid-connected PV power generation systems. The site selection process for PV arrays and electrical transformers directly affects both the system's power generation efficiency and costs. However, this site selection task poses significant challenges for optimization algorithms. PSO is one of the most widely used population-based optimizers with a wide range of applications. Due to the shortcomings of premature convergence and local optima entrapment of PSO on site selection problem, this paper gives a piecewise variation PSO, which adopted global particle variation operation in the early stage of iteration to improve the global search ability, and used constrained variation and small-scale variation operation of better particles in the later stage of iteration. Through comparison with optimization results obtained from standard test functions, it is confirmed that this algorithm possesses superior performance in optimizing multimodal functions. Additionally, the designed algorithm is applied to effectively resolve the PV array site selection and electrical transformer site selection problems. Empirical findings derived from experiments demonstrate that the proposed SMPSO algorithm surpasses alternative PSO algorithms in terms of solution quality and convergence speed. Its implementation is expected to yield cost-efficient designs for photovoltaic power generation systems .
S

SunView 深度解读

该SMPSO算法对阳光电源光伏电站规划具有重要应用价值。在大型地面电站设计中,可优化SG系列逆变器和箱变布局,降低线损和建设成本。算法的分段变异策略可集成到iSolarCloud平台的智能选址模块,结合地形、辐照和电网接入条件,实现光伏阵列与ST系列储能系统的协同优化配置。其快速收敛特性适用于多场景方案对比,提升EPC项目前期设计效率,为1500V高压系统和集中式逆变器的最优部署提供算法支撑。