← 返回
储能系统技术 储能系统 微电网 ★ 5.0

混合氢-电池储能微电网的长期能量管理:一种无需预测的协同优化框架

Long-term energy management for microgrid with hybrid hydrogen-battery energy storage: A prediction-free coordinated optimization framework

语言:

中文摘要

摘要 本文研究了协调混合氢-电池储能系统的微电网长期能量管理问题。我们建立了一种近似的半经验性氢储能模型,以准确刻画氢储能系统效率随功率变化的特性。提出了一种无需预测信息的两阶段协同优化框架,该框架离线生成氢储能系统全年荷电状态(SoC)参考轨迹;在在线运行阶段,利用核回归方法对SoC参考值进行在线更新,并基于所提出的自适应虚拟队列在线凸优化(OCO)算法做出运行决策。本文创新性地引入了用于长期模式跟踪和专家跟踪的惩罚项,以实现步长的自适应更新。我们提供了理论证明,表明所提出的OCO算法在不依赖预测信息的情况下可实现动态遗憾的次线性上界。基于Elia和中国华北地区数据集开展的数值实验表明,与模型预测控制方法相比,所提框架显著优于现有的在线优化方法,分别将运行成本和负荷损失降低了约60%和90%。此外,长期参考轨迹跟踪机制对该性能提升的贡献超过50%。这些效益还可通过优化OCO算法中惩罚系数和步长的设置以及引入更多历史参考数据而进一步增强。

English Abstract

Abstract This paper studies the long-term energy management of a microgrid coordinating hybrid hydrogen-battery energy storage. We develop an approximate semi-empirical hydrogen storage model to accurately capture the power-dependent efficiency of hydrogen storage. We introduce a prediction-free two-stage coordinated optimization framework, which generates the annual state-of-charge (SoC) reference for hydrogen storage offline. During online operation, it updates the SoC reference online using kernel regression and makes operation decisions based on the proposed adaptive virtual-queue-based online convex optimization (OCO) algorithm. We innovatively incorporate penalty terms for long-term pattern tracking and expert-tracking for step size updates. We provide theoretical proof to show that the proposed OCO algorithm achieves a sublinear bound of dynamic regret without using prediction information. Numerical studies based on the Elia and North China datasets show that the proposed framework significantly outperforms existing online optimization approaches, reducing operational costs and loss of load by approximately 60% and 90%, respectively, compared to the model predictive control method. Additionally, the introduction of long-term reference tracking contributes to over 50% of this reduction. These benefits can be further enhanced with optimized settings for the penalty coefficient and step size of OCO, as well as more historical references.
S

SunView 深度解读

该氢储能-电池混合储能长期能源管理技术对阳光电源ST系列储能变流器和PowerTitan系统具有重要应用价值。论文提出的无预测两阶段协调优化框架和自适应虚拟队列OCO算法,可显著提升混合储能系统的经济性和可靠性,运营成本降低60%、失负荷减少90%。该框架的长期SoC参考跟踪机制和功率相关效率建模方法,可为阳光电源微电网储能系统的能量管理策略优化提供创新思路,特别适用于配置氢储能的大型ESS解决方案,助力iSolarCloud平台实现更智能的预测性维护和多时间尺度协调控制。