← 返回
电池储能系统的优化配置以提高弱电网的系统可靠性及电压和频率稳定性
Optimal allocation of battery energy storage systems to improve system reliability and voltage and frequency stability in weak grids
| 作者 | Dong Zhang · Gm M. Shafiullah · Choton K.Das · Kok Wai Wong |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 377 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 弱电网并网 可靠性分析 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Optimal allocation of utility-scale [battery energy storage systems](https://www.sciencedirect.com/topics/engineering/battery-energy-storage "Learn more about battery energy storage systems from ScienceDirect's AI-generated Topic Pages") (BESS) in weak grids is presented. |
语言:
中文摘要
摘要 近年来,太阳能和风能等可再生能源在电力网络中的集成显著增加。然而,这些能源本质上具有波动性和间歇性,给电网的稳定性和可靠性维持带来了挑战。应对这些挑战的一个有前景的解决方案是战略性地部署电池储能系统(Battery Energy Storage Systems, BESS)。BESS能够在需要时快速对电网进行充放电,从而支持改善系统的电压和频率稳定性,并提高系统可靠性。为了充分挖掘BESS在电力系统中的优势,确定其最优配置至关重要。因此,本文提出了一种在弱电网中优化配置BESS的技术,旨在增强系统的电压和频率稳定性并提升系统可靠性。所提出的方法采用最新的自适应灰狼优化算法(Adaptive Grey Wolf Optimisation, AGWO)来确定BESS的最佳容量和安装位置。AGWO算法是一种元启发式优化算法,通过一群“狼”在解空间中搜索最优解。本文采用灰狼优化算法(GWO)、白鲸优化算法(Beluga Whale Optimisation, BWO)和麻雀搜索算法(Sparrow Search Algorithm, SSA)对AGWO方法的结果进行验证。所提方法的有效性在高比例可再生能源分布式发电渗透的弱IEEE-39节点系统中,通过DIgSILENT PowerFactory软件进行了验证。仿真结果表明,在最优位置和容量下接入BESS,能够显著改善电网的电压和频率稳定性,并提高其可靠性。该方法可为电网运行人员和系统规划者在将BESS集成到电网中的决策过程中提供科学依据。
English Abstract
Abstract Integration of renewable energy sources like solar and wind power into the power network has increased significantly in recent years. However, these sources are inherently variable and intermittent, which leads to challenges in maintaining grid stability and reliability. A promising solution to these challenges is the strategic deployment of battery energy storage systems (BESS). The BESS can support improving system voltage and frequency stability and increase system reliability because it can rapidly charge and discharge the grid when needed. To fully explore the advantages of BESS in power systems , it is crucial to determine their optimal allocation. Therefore, this paper presents a technique for optimal allocation of BESS in weak grids to bolster system voltage and frequency stability and enhance system reliability. The proposed method uses the recent adaptive grey wolf optimisation (AGWO) algorithm to identify the optimal capacity and placement of the BESS. The AGWO algorithm is a metaheuristic optimisation algorithm that uses a population of wolves to explore the solution space for the best outcome. The outcomes from the AGWO method are validated using grey wolf optimisation (GWO), beluga whale optimisation (BWO), and sparrow search algorithm (SSA). The efficacy of the proposed methodology is validated in a high renewable distributed generation (DG) penetrated weak IEEE-39 bus system using DIgSILENT PowerFactory software. Simulation findings demonstrate that integrating BESS at the optimal location and size can significantly improve the voltage and frequency stability of the grid and increase its reliability. The proposed methodology can help grid operators and system planners make informed decisions on integrating BESS into the grid.
S
SunView 深度解读
该研究针对弱电网中储能系统优化配置的方法,对阳光电源ST系列PCS和PowerTitan储能解决方案具有重要应用价值。论文提出的自适应灰狼优化算法可为阳光电源储能系统的容量规划和选址提供理论支撑,特别是在高比例新能源接入场景下。结合阳光电源GFM/GFL控制技术和VSG虚拟同步机功能,可进一步提升弱电网的电压频率稳定性和系统可靠性。该方法论可集成至iSolarCloud平台,为储能项目前期规划和智能运维提供决策依据,增强阳光电源在弱电网储能解决方案领域的技术竞争力。