← 返回
用于流场图案的天然TPMS多孔结构以改善质子交换膜燃料电池在高电流密度运行中的传质性能
Natural TPMS porous architectures for flow-field patterns to improve mass transport in high current density operations of proton exchange membrane fuel cells
| 作者 | Phuc Ho-Van · Ocktaeck Lim |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 381 卷 |
| 技术分类 | 氢能与燃料电池 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | Natural TPMS porous networks have been applied to fuel cell flow fields. |
语言:
中文摘要
在质子交换膜燃料电池(PEMFC)中提升其在高电流密度下工作的能力,对于实现广泛采用至关重要。值得注意的是,多项研究致力于开发合适的流场图案以缓解传质受限导致的性能损失,然而目前尚无一种流场能够有效应对在此类工况下同时出现的水淹和燃料饥饿双重挑战。本研究提出了一种新颖的方法,即将受自然界启发的三周期性极小曲面(TPMS)多孔结构引入PEMFC的流场设计中。我们的数值模拟结果表明,G-细带网络(GL25-FF)是最具前景的解决方案。其周期性且非曲折的孔道结构能够有效地将气流引导至气体扩散层(GDL),使GL25-FF在所提出的流场中实现了最低的压力降。基于MATLAB的图像处理结果显示,GL25-FF能够保持氧气在阴极区域的均匀分布,在电池电压为0.4 V时达到1.91 A/cm²的电流密度,比基于丰田Mirai的先进三维细网流场(3DFF)高出5%。此外,其极化曲线表现出几乎线性的趋势,且功率密度未出现下降。同时,GL25-FF在多孔介质中的气相和液相含水量均为最低,但仍能实现最佳的质子交换膜水合状态,显示出其在防止膜干燥和电极水淹两方面均具备优异能力。另一方面,I-细带网络由于局部肋条面积较小,相较于传统的平行流场(CPFF)显著提高了反应物分布的均匀性,在欧姆损耗区域使电流密度提升了8%–15%。尽管其在促进强制对流气体穿透进入GDL方面表现不足,导致其电流密度为1.7 A/cm²,低于3DFF的1.82 A/cm²,但其峰值功率密度仍比CPFF提高了18%。本研究结果首次揭示了G-细带网络在传质性能方面的卓越表现,证实了其克服传质限制的潜力,从而拓展了PEMFC在高电流密度下的运行范围,并为下一代流场结构的设计提供了新的方向。
English Abstract
Abstract Extending the ability to work at high current densities in proton-exchange membrane fuel cells (PEMFCs) is imperative for widespread adoption. Notably, multiple studies point to developing suitable flow-field patterns to mitigate mass-limited losses, yet there is no flow field that can effectively address the dual challenges of water flooding and fuel starvation in these operating conditions. In this study, we introduced a novel approach by integrating nature-inspired triply periodic minimal surface-based (TPMS) porous architectures into the PEMFC flow field. Our numerical results suggest that the G -ligament network ( G L 25 -FF) is the most promising solution. Periodic, non-tortuous pores effectively guide airflow toward gas diffusion layer (GDL), making G L 25 -FF achieve the lowest pressure drop among the proposed flow fields. MATLAB-based image processing reveals that G L 25 -FF keeps O 2 evenly distributed, leading to a current density of 1.91 A / cm 2 at a cell voltage of 0.4 V - 5 % greater than the state-of-the-art 3D fine-mesh flow field (3DFF) based on Toyota Mirai. An almost linear relationship in the polarization curve with no decline in the power density was also observed. Additionally, the G L 25 -FF shown the lowest water content in both vapor and liquid phases within the porous media but still achieved optimal membrane hydration, demonstrating its capability to prevent both drying and flooding. On the other hand, the I -ligament network improved reactant distribution uniformity over conventional parallel flow field (CPFF) due to its smaller local rib area, leading to an 8–15 % increase in current density in the ohmic loss region. Although it falls short in supporting forced convective gas penetration into the GDL, resulting in a current density of 1.7 A / cm 2 against 1.82 A / cm 2 for 3DFF, it nevertheless increased peak power density by 18 % over CPFF. Our findings provide initial insight into the outstanding performance of the G -ligament network, confirming its potential to address mass-transport limitation, thereby extending the operational range of PEMFCs at high current densities and providing a new direction for next-generation flow-field designs.
S
SunView 深度解读
该TPMS仿生多孔流场技术对阳光电源氢能储能系统具有重要借鉴价值。其G-配体网络结构通过优化质量传输,在0.4V电压下实现1.91A/cm²电流密度,较丰田Mirai提升5%,可应用于公司燃料电池备用电源系统。该技术的双相水管理策略和低压降设计理念,可迁移至ST系列PCS的液冷散热优化,改善大功率储能变流器的热管理效率。周期性非扭曲孔隙结构对PowerTitan集装箱储能系统的通风设计亦有启发,有助提升高倍率充放电工况下的温控均匀性与系统可靠性。