找到 2 条结果
一种基于迁移学习的集成稀疏门控图密度网络用于多站点可再生能源概率预测
An Integrated Sparse Gated Graph Density Network Based on Transfer Learning for Multi-Site Probabilistic Forecasting of Renewable Energy
Kang Wang · Jianzhou Wang · Zhiwu Li · Yilin Zhou · IEEE Transactions on Sustainable Energy · 2024年10月
大规模新能源并网对智能电网的安全高效运行带来严峻挑战。可再生能源概率预测(REPF)技术可分析发电不确定性,量化风险平衡,防止电网崩溃。然而,现有依赖时空图的方法难以准确估计可再生能源的概率密度函数(PDF),导致对分布式发电系统的不确定性分析不足。为此,本文提出一种融合迁移学习的集成稀疏门控图密度网络(ISGGDN)。该模型结合交叉注意力与残差连接,构建稀疏门控图动态卷积网络,有效提取站点间空间特征及时空交互关系,提升概率预测精度。同时,设计多种迁移学习微调策略,增强特征迁移能力。基于相邻多站...
解读: 该ISGGDN多站点概率预测技术对阳光电源iSolarCloud智能运维平台及PowerTitan储能系统具有重要应用价值。通过稀疏门控图网络捕捉分布式光伏电站间时空关联,可显著提升SG系列逆变器集群的功率预测精度,为ST系列储能变流器提供更准确的充放电调度依据。其概率密度函数估计能力可优化储能系统...
基于综合模型筛选与多阶段优化任务的光伏发电不确定性量化系统
Photovoltaic power uncertainty quantification system based on comprehensive model screening and multi-stage optimization tasks
Linyue Zhang · Jianzhou Wang · Yuansheng Qian · Zhiwu Li · Applied Energy · 2025年1月 · Vol.381
准确预测光伏发电功率对于电网调度与能源管理至关重要。然而,在区间预测当前研究中,组合策略中基准模型确定的客观性、确定性预测结果的稳定性、误差分布拟合中参数设置的合理性以及预测区间上下限的有效性已成为主要挑战。为解决上述问题,本文将综合模型评价机制与波动量化理论相结合,提出一种多阶段优化的光伏发电功率区间预测系统。该系统首先利用互信息技术降低由冗余带来的计算复杂度;进而,模型选择模块通过计算综合邻近度,自适应地确定基准模型;最后,设计了三类参数优化任务,以提升预测区间的可靠性与分辨率。该系统采用中...
解读: 该光伏功率区间预测系统对阳光电源iSolarCloud智慧运维平台具有重要应用价值。通过多阶段优化的不确定性量化方法,可显著提升SG系列逆变器功率预测精度和可靠性,优化MPPT控制策略。其综合模型评估机制可集成至PowerTitan储能系统的能量管理模块,实现光储协同调度优化。预测区间的上下界信息为...