← 返回
光伏发电技术
★ 5.0
基于综合模型筛选与多阶段优化任务的光伏发电不确定性量化系统
Photovoltaic power uncertainty quantification system based on comprehensive model screening and multi-stage optimization tasks
| 作者 | Linyue Zhang · Jianzhou Wang · Yuansheng Qian · Zhiwu Li |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 381 卷 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A comprehensive model evaluation mechanism enhances the robustness of PIFS. |
语言:
中文摘要
准确预测光伏发电功率对于电网调度与能源管理至关重要。然而,在区间预测当前研究中,组合策略中基准模型确定的客观性、确定性预测结果的稳定性、误差分布拟合中参数设置的合理性以及预测区间上下限的有效性已成为主要挑战。为解决上述问题,本文将综合模型评价机制与波动量化理论相结合,提出一种多阶段优化的光伏发电功率区间预测系统。该系统首先利用互信息技术降低由冗余带来的计算复杂度;进而,模型选择模块通过计算综合邻近度,自适应地确定基准模型;最后,设计了三类参数优化任务,以提升预测区间的可靠性与分辨率。该系统采用中国河北省多个地区的历史发电功率数据进行训练与验证。结果表明,在四种预测场景下,所提模型的平均综合排名分别为1、1.5、2和1.5,预测性能优于其他对比模型。这表明该方法不仅为当前研究中的挑战提供了有效解决方案,也为电网运营商在能源调度与管理方面提供了新的工具。
English Abstract
Abstract Accurately predicting photovoltaic output power is crucial for grid management and energy dispatch. However, the objectivity of benchmark model determination in combination strategy, the stability of deterministic prediction results, the rationality of parameter setting in error distribution fitting and the validity of upper and lower bounds of prediction interval have become major challenges for current research on interval prediction. To address these issues, this paper integrates a comprehensive model evaluation mechanism with fluctuation quantification theory, and proposes a multi-stage optimized photovoltaic power interval prediction system. The system first reduces computational complexity caused by redundancy using mutual information techniques. Accordingly, the model selection module calculates comprehensive proximity to adaptively determine benchmark models. Finally, three types of parameter optimization tasks are designed to improve the reliability and resolution of the prediction intervals. The system is trained and validated using historical power data from various locations in Hebei Province, China. Results show that in four prediction scenarios, the proposed model's average comprehensive rankings are 1, 1.5, 2, and 1.5, outperforming other comparative models in predictive performance. This indicates that the method not only provides an effective solution to the current research challenges, but also offers a new vehicle for grid operators in energy dispatch and management.
S
SunView 深度解读
该光伏功率区间预测系统对阳光电源iSolarCloud智慧运维平台具有重要应用价值。通过多阶段优化的不确定性量化方法,可显著提升SG系列逆变器功率预测精度和可靠性,优化MPPT控制策略。其综合模型评估机制可集成至PowerTitan储能系统的能量管理模块,实现光储协同调度优化。预测区间的上下界信息为GFM/GFL控制策略提供决策依据,提升电网友好性。该技术可增强阳光电源在新能源调度管理领域的智能化水平,为能源互联网解决方案提供核心算法支撑。