找到 2 条结果

排序:
光伏发电技术 储能系统 深度学习 ★ 5.0

基于深度学习与遥感的城市土地分类对光伏潜力的分析

PV potential analysis through deep learning and remote sensing-based urban land classification

Hongjun Tan · Zhiling Guo · Yuntian Chen · Haoran Zhang 等7人 · Applied Energy · 2025年1月 · Vol.387

城市土地在商业、居住、草地及其他行政分区中的利用情况将影响可再生能源基础设施(如光伏板)的可用安装面积。将土地利用类型纳入光伏潜力评估对于优化空间配置、贴近能源需求中心以及提升系统效率至关重要。为解决以往研究忽视城市土地利用问题的局限性,本文提出一个融合遥感数据与深度学习方法的框架,实现八类细粒度和三类粗粒度的土地利用分类。该框架针对每种土地利用类型计算其可安装光伏系统的面积,并结合2023年年均太阳辐照量评估其发电潜力。案例研究表明,德国海尔布隆(Heilbronn)地区的土地适合地面光伏安装...

解读: 该研究基于深度学习和遥感数据的城市土地分类与光伏潜力评估框架,对阳光电源SG系列逆变器和iSolarCloud平台具有重要应用价值。通过精细化土地利用分类(商业、住宅、未利用地等),可优化地面光伏与屋顶光伏的配置策略。研究中不同地类的单位面积发电潜力差异,可指导阳光电源1500V系统和MPPT优化技...

风电变流技术 SiC器件 深度学习 ★ 5.0

符合概率分布的物理约束风力发电预测方法:面向抗噪深度学习

Physics-constrained wind power forecasting aligned with probability distributions for noise-resilient deep learning

Jiaxin Gao · Yuanqi Cheng · Dongxiao Zhang · Yuntian Chen · Applied Energy · 2025年1月 · Vol.383

摘要 风电作为关键的可再生能源之一,在实现碳中和目标中发挥着重要作用。然而,由于风速预测数据具有高噪声特性,风力发电功率的准确预测面临挑战,这会降低预测的精度与鲁棒性。为解决这一问题,本文提出一种理论引导(即物理约束)的深度学习风力发电预测方法(TgDPF)。TgDPF将表征风电功率概率分布的风电功率曲线领域知识,与长短期记忆网络(LSTM)深度学习模型相结合。该融合机制确保模型输出与风电功率的概率分布保持一致,遵循物理约束条件,从而增强对噪声的抵抗能力。因此,TgDPF是一种典型的物理约束建模...

解读: 该物理约束深度学习风电预测技术对阳光电源储能系统(ST系列PCS、PowerTitan)具有重要应用价值。通过融合风电功率曲线概率分布与LSTM模型,在高噪声环境下预测精度提升24.7%-73.9%,可显著优化储能系统的充放电策略与能量管理。该方法的抗噪声特性与物理约束思想可迁移至iSolarClo...