找到 2 条结果
基于时空信息增益嵌入图结构学习的风电场群超短期功率预测
Ultra-Short-Term Prediction of Wind Farm Cluster Power Based on Embedded Graph Structure Learning With Spatiotemporal Information Gain
Mao Yang · Yunfeng Guo · Fulin Fan · IEEE Transactions on Sustainable Energy · 2024年9月
风电场群超短期功率预测对日内发电计划制定具有重要意义,但受天气系统混沌效应及信息不完整性影响,预测精度提升困难。本文提出一种融合时空信息增益(STIG)理论的风电场群嵌入图结构学习方法,基于风电场间功率波形的时空传递关系构建描述信息演化关联的图结构。提出嵌入式图注意力网络(EGAN)以学习风电场间的STIG邻接关系,并构建基于STIG距离的动态冗余节点分组策略降低建模复杂度。在中国内蒙古风电场群的应用结果表明,所提方法在各时间尺度下NRMSE、NMAE和MAPE平均降低2.63%、2.09%和2...
解读: 该风电场群超短期功率预测技术对阳光电源储能系统和智能运维产品具有重要应用价值。在PowerTitan大型储能系统中,可基于时空信息增益图结构学习实现风储联合调度的精准功率预测,优化ST系列储能变流器的充放电策略制定,提升日内发电计划准确性。嵌入式图注意力网络(EGAN)可集成至iSolarCloud...
考虑NWP风速误差容忍度的功率预测:一种在风速偏差场景下提升短期风电功率预测精度的策略
Power prediction considering NWP wind speed error tolerability: A strategy to improve the accuracy of short-term wind power prediction under wind speed offset scenarios
Mao Yang · Yunfeng Guo · Tao Huang · Wei Zhang · Applied Energy · 2025年1月 · Vol.377
摘要 短期风电功率预测对于风电参与日前调度具有重要意义。然而,不可避免的数值天气预报(NWP)误差给高精度风电功率预测带来了严峻挑战,尤其是在功率峰谷时段,极端误差尤为显著。针对这一问题,本文提出了一种考虑风速偏差场景及加权改进偏差损失函数(WIOLF)的短期风电功率预测精度提升策略。该方法引入多层级有向无环图结构以识别风速偏差场景,并采用带有梯度惩罚的Wasserstein生成对抗网络(WGAN-GP)解决样本不平衡问题。在功率预测部分,将WIOLF集成至时间卷积网络(TCN)与多头自注意力机...
解读: 该风电功率预测技术对阳光电源储能系统具有重要应用价值。针对NWP风速误差导致的功率预测偏差,可应用于ST系列PCS的智能调度策略优化。通过风速偏移场景识别与WGAN-GP样本平衡技术,能提升PowerTitan储能系统在风储联合调度中的日前计划准确性。TCN-MHSA组合模型的加权损失函数思路,可借...