← 返回
考虑NWP风速误差容忍度的功率预测:一种在风速偏差场景下提升短期风电功率预测精度的策略
Power prediction considering NWP wind speed error tolerability: A strategy to improve the accuracy of short-term wind power prediction under wind speed offset scenarios
| 作者 | Mao Yang · Yunfeng Guo · Tao Huang · Wei Zhang |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 377 卷 |
| 技术分类 | 风电变流技术 |
| 技术标签 | DAB |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Proposed a multi-layer DAG model for offset scenario identification of wind speed |
语言:
中文摘要
摘要 短期风电功率预测对于风电参与日前调度具有重要意义。然而,不可避免的数值天气预报(NWP)误差给高精度风电功率预测带来了严峻挑战,尤其是在功率峰谷时段,极端误差尤为显著。针对这一问题,本文提出了一种考虑风速偏差场景及加权改进偏差损失函数(WIOLF)的短期风电功率预测精度提升策略。该方法引入多层级有向无环图结构以识别风速偏差场景,并采用带有梯度惩罚的Wasserstein生成对抗网络(WGAN-GP)解决样本不平衡问题。在功率预测部分,将WIOLF集成至时间卷积网络(TCN)与多头自注意力机制(MHSA)相结合的组合模型中,优化其决策机制,从而训练出适用于风速偏差场景的风电功率偏差预测模型,以提高此类场景下的功率预测精度。所提方法应用于中国内蒙古西部多个风电场,结果表明,与直接预测方法相比,该方法的均方根误差(RMSE)和平均绝对误差(MAE)分别降低了7.41%和6.10%,决定系数(R2)提高了9.06%,验证了该方法的有效性。
English Abstract
Abstract Short-term wind power prediction is of great significance for wind power participation in day-ahead scheduling. However, unavoidable numerical weather prediction (NWP) errors bring severe challenges to high-precision prediction of wind power, especially in the power peaks and valleys periods, the extreme error is significant. In this regard, this paper proposes a strategy to improve the accuracy of short-term wind power prediction taking into account the wind speed offset scenario and the weighted improved offset loss function (WIOLF). Introducing a multi-level directed acyclic graph structure for identification of wind speed offset scenarios, and a Wasserstein GAN (WGAN-GP) network with gradient penalty is used to solve the problem of sample imbalance. In the power prediction part, WIOLF is integrated into the combination model of temporal convolution network (TCN) combined with multi-head self-attention mechanism (MHSA) to improve its decision-making mechanism, so as to train a wind power offset prediction model to improve the power prediction accuracy in wind speed offset scenarios. The proposed method is applied to several wind farms in Western Inner Mongolia, China, the results show that compared with the direct prediction method, the RMSE and MAE of the proposed method are reduced by 7.41 % and 6.10 %, and the R2 is increased by 9.06 %, respectively, which verifies the effectiveness of the method.
S
SunView 深度解读
该风电功率预测技术对阳光电源储能系统具有重要应用价值。针对NWP风速误差导致的功率预测偏差,可应用于ST系列PCS的智能调度策略优化。通过风速偏移场景识别与WGAN-GP样本平衡技术,能提升PowerTitan储能系统在风储联合调度中的日前计划准确性。TCN-MHSA组合模型的加权损失函数思路,可借鉴至iSolarCloud平台的预测性维护算法,优化风光储一体化项目的功率预测精度,降低7.41%的RMSE对提升储能系统响应效率和电网友好性具有直接价值,支撑GFM控制策略的前瞻性调节能力。