← 返回
风电变流技术 DAB ★ 5.0

基于自适应KS变换与JetLeaf Synth网络的复杂电能质量扰动先进诊断框架

An Advanced Diagnose Framework for Complex Power Quality Disturbances Using Adaptive KS-Transform and JetLeaf Synth Network

作者 Minjun He · Jun Ma · Alessandro Mingotti · Qiu Tang · Lorenzo Peretto · Zhaosheng Teng
期刊 IEEE Transactions on Industrial Electronics
出版日期 2024年7月
技术分类 风电变流技术
技术标签 DAB
相关度评分 ★★★★★ 5.0 / 5.0
关键词 电能质量扰动 自适应Kaiser S变换 JetLeaf Synth网络 检测框架 准确诊断
语言:

中文摘要

准确识别电能质量扰动(PQDs)对提升能源效率和推动智能电网发展至关重要。针对可再生能源并网带来的复杂扰动问题,本文提出一种基于自适应Kaiser S变换(AKST)与JetLeaf Synth网络(JSTN)的自动检测框架。AKST通过优化Kaiser窗参数以实现最大能量聚集,显著提升时频分辨率;JSTN则融合双叶混合器的局部细节感知能力与喷流变压器的全局上下文建模能力,有效提取扰动特征。二者结合构成混合自适应时频JetLeaf SynthNet(HAJSTN),仿真与实验结果表明,该方法在多种PQD识别中优于现有先进方法,具有优异诊断性能。

English Abstract

The accurate diagnosis of power quality disturbances (PQDs) is crucial for improving energy efficiency and advancing the development of the smart grid. However, the widespread adoption of solar and wind power introduces numerous power electronic converters, complicating PQDs and heightening identification challenges. This article introduces a novel automatic detection framework based on the adaptive Kaiser S-transform (AKST) and JetLeaf Synth network (JSTN), enabling the automatic analysis and detection of intricate PQD signals. To begin, AKST is employed to analyze the time-frequency characteristics of PQD signals. By adaptively refining the parameters of the Kaiser window based on maximum energy concentration, the time-frequency resolution is effectively improved, providing more detailed information. Subsequently, JSTN is developed to automatically extract and recognize crucial distinctive features of PQDs from the time-frequency matrix generated by AKST. Within JSTN, it inherits the local detail capability of the twin leaf mixer (TLM) and the global context ability of the jet-stream transformer (JST), significantly enhancing diagnostic accuracy. The integration of AKST and JSTN results in a detection framework known as hybrid adaptive time-frequency JetLeaf SynthNet (HAJSTN), which is proposed to achieve accurate diagnosis of various PQDs. Multiple simulations and an extensive experimental activity validate that HAJSTN outperforms some advanced PQD identification methods, demonstrating its commendable performance.
S

SunView 深度解读

该电能质量扰动诊断框架对阳光电源的储能变流器和光伏逆变器产品线具有重要应用价值。AKST-JSTN方法可集成到ST系列储能变流器和SG系列光伏逆变器的监控系统中,提升对谐波、电压波动等并网扰动的识别精度。特别是在大型储能电站中,该技术可助力PowerTitan系统实现更精准的电网故障诊断。结合iSolarCloud平台,可强化设备预测性维护能力,提高产品可靠性。这对完善阳光电源的GFM/GFL控制策略、优化并网性能具有重要参考价值,有助于提升公司在储能与光伏产品的技术竞争力。