找到 2 条结果

排序:
风电变流技术 ★ 5.0

基于重叠历史数值天气预报集成的日内风电功率预测

Intraday Wind Power Forecasting by Ensemble of Overlapping Historical Numerical Weather Predictions

Yongning Zhao · Shiji Pan · Yanxu Chen · Haohan Liao 等6人 · IEEE Transactions on Sustainable Energy · 2024年12月

数值天气预报(NWP)对提升日内风电功率预测(WPF)精度至关重要。然而,传统方法仅依赖最新单次NWP,忽略了时序发布且时间重叠的多段历史NWP中的隐含信息。为此,本文提出一种融合重叠历史NWP的时空表征学习网络。通过掩码-重构预训练策略提取风电与NWP的隐含特征,并结合端到端微调及硬参数共享的多任务学习机制,提升多风电场预测均衡性。基于5个真实风电场的实验表明,该方法在各预测时域均优于基线模型。

解读: 该风电功率预测技术对阳光电源储能和智能运维产品线具有重要应用价值。首先,可将其集成至ST系列储能系统的EMS能量管理模块,提升风储联合运行的调度精度。其次,该技术可优化iSolarCloud平台的新能源发电预测功能,通过多时序NWP数据融合提升预测准确度,为用户提供更可靠的发电计划和运维决策支持。特...

风电变流技术 储能系统 深度学习 ★ 5.0

通过特征空间匹配分析解释基于时空相关性的LASSO回归模型用于风电功率预测

Interpreting LASSO regression model by feature space matching analysis for spatio-temporal correlation based wind power forecasting

Yongning Zhao · Yuan Zhao · Haohan Liao · Shiji Pan 等5人 · Applied Energy · 2025年1月 · Vol.380

摘要 解释高性能的风电功率预测(WPF)模型对于推动更可信和更精确的预测方法至关重要。当前的研究主要集中在解释黑箱深度学习模型,而忽视了能够直接指示特征重要性的自解释模型,尽管这些模型无法阐明其背后的成因机制。基于最小绝对收缩与选择算子(LASSO)的自解释回归模型在WPF中表现出色。因此,探索其内在决策逻辑及其系数的实际意义,以提取有益的领域知识,具有重要意义。本文提出了一种解释框架,旨在阐明考虑时空相关性的LASSO回归模型在WPF中的决策逻辑。该框架包含四个主要组成部分:首先,建立一个时空...

解读: 该LASSO回归模型解释框架对阳光电源储能系统(ST系列PCS、PowerTitan)和iSolarCloud平台具有重要应用价值。通过时空相关性量化和特征匹配分析,可优化风储协同预测精度,提升储能系统功率调度策略。特征扰动分析方法可应用于多场站协同控制,识别关键影响因素如特征共线性、参考场站空间分...