← 返回
风电变流技术 ★ 5.0

基于重叠历史数值天气预报集成的日内风电功率预测

Intraday Wind Power Forecasting by Ensemble of Overlapping Historical Numerical Weather Predictions

作者 Yongning Zhao · Shiji Pan · Yanxu Chen · Haohan Liao · Yingying Zheng · Lin Ye
期刊 IEEE Transactions on Sustainable Energy
出版日期 2024年12月
技术分类 风电变流技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 日内风电功率预测 数值天气预报 时空表征学习网络 多任务学习 预测精度
语言:

中文摘要

数值天气预报(NWP)对提升日内风电功率预测(WPF)精度至关重要。然而,传统方法仅依赖最新单次NWP,忽略了时序发布且时间重叠的多段历史NWP中的隐含信息。为此,本文提出一种融合重叠历史NWP的时空表征学习网络。通过掩码-重构预训练策略提取风电与NWP的隐含特征,并结合端到端微调及硬参数共享的多任务学习机制,提升多风电场预测均衡性。基于5个真实风电场的实验表明,该方法在各预测时域均优于基线模型。

English Abstract

The numerical weather prediction (NWP) is crucial to improve intraday wind power forecasting (WPF) accuracy. However, conventional WPF methods relied solely on a latest reported single NWP, overlooking hidden information from sequentially reported multiple historical NWPs that are partially overlapped over time. Additionally, it's challenging to tackle intraday WPF as it involves both ultra-short-term and short-term horizons with different characteristics. Therefore, a novel spatio-temporal representation learning network is proposed for intraday WPF by ensemble of overlapping historical NWPs. Initially, an integrated mask-reconstruction representation learning pretraining strategy is employed to extract hidden representations of historical wind power measurements and overlapping historical NWPs, providing contextual information for the subsequent intraday WPF task. Then, the output layer is trained and end-to-end fine-tuning of the entire network is conducted to adapt to the specific forecasting task. Moreover, a multi-task learning strategy based on hard parameter sharing is adopted to ensure balanced predictive accuracy across each of forecasted wind farms. Case study and detailed ablation tests based on 5 real-world wind farms demonstrate that the proposed method enhances the forecasting accuracy of most wind farms by leveraging spatio-temporal correlation, achieving the best average performance across all time horizons compared to the baseline models.
S

SunView 深度解读

该风电功率预测技术对阳光电源储能和智能运维产品线具有重要应用价值。首先,可将其集成至ST系列储能系统的EMS能量管理模块,提升风储联合运行的调度精度。其次,该技术可优化iSolarCloud平台的新能源发电预测功能,通过多时序NWP数据融合提升预测准确度,为用户提供更可靠的发电计划和运维决策支持。特别是在大型风光储项目中,该算法可助力储能系统实现更优的充放电策略,提高系统经济性。建议将此技术应用于PowerTitan等大型储能产品的智能调度系统,增强阳光电源在风储联合领域的技术优势。