找到 2 条结果
HiGN-ARec:一种用于空间层级光伏功率预测的自适应协调分层图网络
HiGN-ARec: A Hierarchical Graph Network with Adaptive Reconciliation for PV Power Forecasting in Spatial Hierarchy
Yanru Yang · Ping Wang · Shaolong Shu · Feng Lin · IEEE Transactions on Sustainable Energy · 2025年8月
在具有层级结构的电网中,光伏(PV)功率预测至关重要。本文提出一种端到端深度网络HiGN-ARec,可同时预测各层级的光伏功率。该模型包含基础预测与协调两部分:基础预测部分结合先进的时空模块与跨层级交互模块,充分挖掘层级内与层级间信息;协调部分引入可学习的协调矩阵P和聚合矩阵S,以实现预测结果的动态调整与层级一致性约束。实验基于美国国家可再生能源实验室(NREL)的合成数据验证了方法的有效性,结果表明所提方法优于现有对比方法。
解读: 该分层图网络光伏功率预测技术对阳光电源iSolarCloud智能运维平台及SG系列光伏逆变器具有重要应用价值。其层级化预测架构可直接应用于分布式光伏电站的多层级功率管理:从单台SG逆变器到汇流箱、再到区域电站的全链条预测。自适应协调机制能确保各层级预测一致性,可优化PowerTitan储能系统的充放...
DEST-GNN:一种用于多站点小时内光伏功率预测的双探索时空图神经网络
DEST-GNN: A double-explored spatio-temporal graph neural network for multi-site intra-hour PV power forecasting
Yanru Yang · Yu Liu · Yihang Zhang · Shaolong Shu 等5人 · Applied Energy · 2025年1月 · Vol.378
准确的光伏发电(PV)功率预测对于电网实时平衡和储能系统优化至关重要。然而,由于光伏发电具有间歇性和波动性,实现高精度的光伏功率预测仍然是一项挑战。本文提出了一种用于多站点小时内光伏功率预测的新方法。与当前独立预测每个光伏电站功率的方法不同,我们通过考虑各光伏电站之间固有的时空相关性,同时预测所有站点的发电功率,并设计了一种新型图神经网络模型——DEST-GNN。在DEST-GNN中,采用无向图来表示这些光伏电站之间的依赖关系:每个光伏电站由一个节点表示,任意两个电站之间的时空相关性则由它们之间...
解读: 该多站点小时内光伏功率预测技术对阳光电源SG系列逆变器和ST储能系统具有重要应用价值。DEST-GNN通过时空图神经网络捕捉多电站关联性,可集成至iSolarCloud平台实现区域级功率预测,优化储能系统PowerTitan的充放电策略。其稀疏注意力机制可提升GFM/GFL控制算法的前瞻性调度能力,...