找到 2 条结果

排序:
光伏发电技术 储能系统 ★ 5.0

基于图像分割的屋顶可用面积提取进行光伏资源评估

Photovoltaic resource assessment through roof usable area extraction based on image segmentation

Xiaobin Xua · Jinchao Hua · Haojie Zhang · Yajuan Fenga 等7人 · Solar Energy · 2025年1月 · Vol.297

在大规模屋顶光伏资源(RPV)评估中,传统的可用屋顶面积提取方法主要关注建筑物的外部轮廓,限制了复杂的空间分析能力,并导致评估结果较为粗略。本文提出了一种基于外部和内部轮廓分割的精细化屋顶可用面积提取方法。首先,采用Unet网络对屋顶的外部轮廓进行分割;随后,提出一种基于CNN与Transformer的双分支编码器网络InSF-TransUnet。在TransUnet的基础上引入多尺度CNN编码器,以平衡局部与全局特征。接着,在解码阶段采用多尺度特征融合策略,实现对屋顶内部轮廓的高精度分割。最后...

解读: 该屋顶光伏资源精细化评估技术对阳光电源SG系列逆变器和iSolarCloud平台具有重要应用价值。基于CNN-Transformer的双分支网络可精准识别屋顶可用面积,为分布式光伏系统容量配置提供数据支撑,优化MPPT算法设计和组串方案。结合iSolarCloud平台的AI诊断能力,可实现从资源评估...

风电变流技术 深度学习 ★ 5.0

基于特征谱与扩张因果卷积及Squeeze-Excitation ShuffleNet轻量级深度学习的区域风电场日前低功率输出事件预测

Prediction of Day-Ahead Low-Power Output Events in Regional Wind Farms Using Feature Spectrums with Dilated Causal Convolution and Squeeze-Excitation ShuffleNet Lightweight Deep Learning

Zimin Yang · Xiaosheng Peng · Xiaobin Zhang · Guoyuan Qin 等6人 · IEEE Transactions on Power Systems · 2025年5月

区域风电场低功率输出事件的准确预测对电力系统的电网调度至关重要。然而,传统的风电预测方法主要侧重于提高整体预测精度,因此很少单独讨论风电低功率输出事件。本文提出了一种创新的区域风电场日前低功率输出事件预测方法,该方法利用特征频谱,结合扩张因果卷积(DCC)和挤压 - 激励(SE)改进的ShuffleNet网络。首先,将时间序列区域特征转换为频谱图像,在特征创建和选择后,引入并讨论了三种可能的特征排列方式。其次,提出了DCC - SE - ShuffleNet轻量级深度学习神经网络作为低功率输出事...

解读: 该研究的深度学习预测方法对阳光电源的新能源发电及储能产品具有重要应用价值。特征谱分析与轻量级深度学习模型可集成到ST系列储能变流器和SG系列光伏逆变器的控制系统中,提升功率预测精度。具体应用包括:(1)优化储能系统的充放电调度策略,提高PowerTitan等大型储能系统的经济性;(2)改进光伏/风电...