← 返回
基于图像分割的屋顶可用面积提取进行光伏资源评估
Photovoltaic resource assessment through roof usable area extraction based on image segmentation
| 作者 | Xiaobin Xua · Jinchao Hua · Haojie Zhang · Yajuan Fenga · Jian Yangb · Zhiying Tana · Jianbo Bai |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 297 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A Unet-based method segments external rooftop contours improving [photovoltaic](https://www.sciencedirect.com/topics/engineering/photovoltaics "Learn more about photovoltaic from ScienceDirect's AI-generated Topic Pages") resource assessment accuracy. |
语言:
中文摘要
在大规模屋顶光伏资源(RPV)评估中,传统的可用屋顶面积提取方法主要关注建筑物的外部轮廓,限制了复杂的空间分析能力,并导致评估结果较为粗略。本文提出了一种基于外部和内部轮廓分割的精细化屋顶可用面积提取方法。首先,采用Unet网络对屋顶的外部轮廓进行分割;随后,提出一种基于CNN与Transformer的双分支编码器网络InSF-TransUnet。在TransUnet的基础上引入多尺度CNN编码器,以平衡局部与全局特征。接着,在解码阶段采用多尺度特征融合策略,实现对屋顶内部轮廓的高精度分割。最后,基于分割结果对可用面积进行精细化处理,并开展屋顶光伏资源评估。通过某校园区域的案例研究验证了该算法的实际可行性。
English Abstract
Abstract In large-scale roof photovoltaic resource (RPV) assessments, usable roof area extraction has traditionally focused on outer building contours, limiting complex spatial analysis and leading to rough evaluations. This paper introduces a refined method for roof usable area extraction based on both outer and inner contour segmentations. First, the Unet network is employed to segment the roof’s outer contours. Then, a dual-branch encoder network, InSF-TransUnet, based on CNN and Transformer, is proposed. Based on TransUnet, a Multi-scale CNN encoder is incorporated to balance the local and global features. Next, in the decoding phase, multi-scale feature fusion is employed to achieve high-precision segmentation of the inner contours. Finally, the usable area is refined based on the segmentation results, and the roof photovoltaic resources are assessed. The practical feasibility of the algorithm is validated through a case study of a school area.
S
SunView 深度解读
该屋顶光伏资源精细化评估技术对阳光电源SG系列逆变器和iSolarCloud平台具有重要应用价值。基于CNN-Transformer的双分支网络可精准识别屋顶可用面积,为分布式光伏系统容量配置提供数据支撑,优化MPPT算法设计和组串方案。结合iSolarCloud平台的AI诊断能力,可实现从资源评估到运维全链条智能化,提升屋顶光伏项目IRR。该方法对工商业储能系统PowerTitan的容量配比设计同样具有参考价值,助力构建精准的源储一体化解决方案。