找到 3 条结果
基于神经网络预测器与软演员-评论家算法的电力电子变换器预测控制方法
A Predictive Control Method Based on Neural Predictor and Soft Actor–Critic for Power Converters
Chenghao Liu · Jien Ma · Xing Liu · Lin Qiu 等6人 · IEEE Transactions on Industrial Electronics · 2024年10月
本文着重于将软强化学习(RL)技术引入有限控制集模型预测控制(FCS - MPC)框架,以提升鲁棒性能。更确切地说,在神经预测器的基础上,开发了一个使用软演员 - 评论家算法训练的智能体,用于探索嵌入在MPC框架内的最优控制输入。同时,在训练过程中引入了基于李雅普诺夫函数的约束条件,并给出了相应的权重更新法则。此外,所提出的方法保证了集成了RL智能体的系统的稳定性。最后,仿真和实验结果均验证了该方法相较于现有FCS - MPC方法的优越性。
解读: 从阳光电源的核心业务视角来看,这项基于软强化学习的预测控制技术具有重要的战略价值。该方法将软演员-评论家算法与有限集模型预测控制相结合,通过神经网络预测器实现智能决策,这与我们在光伏逆变器和储能变流器中广泛应用的MPC控制策略形成了技术演进路径。 对于阳光电源的产品线,该技术的核心价值体现在三个层...
基于子空间预测器的预测电压控制方法
Subspace Predictor-Based Predictive Voltage Control for Power Converters
Zeyu Zhang · Jien Ma · Lin Qiu · Xing Liu 等6人 · IEEE Transactions on Industrial Electronics · 2025年2月
有限控制集模型预测控制(FCS-MPC)因性能优异、实现简单和动态响应快,在电力变换器中备受关注。然而,传统FCS-MPC对模型参数依赖性强。为此,本文提出一种基于有限集子空间预测器的电压控制策略,旨在提升系统鲁棒性的同时保留FCS-MPC的优点。该方法在各运行点采用子空间预测器替代物理模型,仅利用历史输入输出数据直接根据参考输出轨迹获取最优控制量,无需知晓系统结构与负载参数,有效避免了参数变化导致的性能下降。三电平中点钳位逆变器实验验证了所提方法的有效性。
解读: 该基于子空间预测器的预测电压控制技术对阳光电源ST系列储能变流器和SG系列光伏逆变器具有重要应用价值。传统MPC对参数依赖性强,在储能系统电池老化、光伏逆变器负载波动等工况下性能易劣化。该方法仅依赖历史数据即可实现最优控制,无需精确模型参数,可显著提升PowerTitan大型储能系统在全生命周期的控...
基于Adaline神经网络的数据使能有限状态预测控制用于电力变换器
Data-Enabled Finite State Predictive Control for Power Converters via Adaline Neural Network
Wenjie Wu · Lin Qiu · Xing Liu · Jien Ma 等6人 · IEEE Transactions on Industrial Electronics · 2024年8月
有限控制集模型预测控制(FCS-MPC)在电力变换器与电机驱动中展现出良好前景,但受限于模型依赖性。本文从动态建模角度提出一种数据使能的有限集预测控制方案。采用动态线性化数据模型在各运行点等效重构系统,并通过自适应线性神经网络在线更新时变参数,提升建模精度与实现性能。同时提出一种改进的无电容电压平衡方法以调节中点电位。由于负载电流与电容电压的无参数预测仅依赖系统输入输出测量及历史数据,有效规避了参数变化带来的不利影响。通过在三电平中点钳位逆变器上的仿真与实验验证了所提方法的优越性。
解读: 该数据驱动的有限集预测控制技术对阳光电源ST系列储能变流器和SG光伏逆变器的三电平拓扑控制具有重要应用价值。通过Adaline神经网络实现无参数化预测控制,可有效解决储能系统在宽工况运行时的参数漂移问题,提升PowerTitan大型储能系统在温度变化、器件老化等复杂工况下的控制鲁棒性。改进的中点电位...