← 返回
基于子空间预测器的预测电压控制方法
Subspace Predictor-Based Predictive Voltage Control for Power Converters
| 作者 | Zeyu Zhang · Jien Ma · Lin Qiu · Xing Liu · Wenjie Wu · Youtong Fang |
| 期刊 | IEEE Transactions on Industrial Electronics |
| 出版日期 | 2025年2月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 SiC器件 三电平 模型预测控制MPC |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 有限控制集模型预测控制 预测电压控制策略 鲁棒性 子空间预测器 三电平中点钳位逆变器 |
语言:
中文摘要
有限控制集模型预测控制(FCS-MPC)因性能优异、实现简单和动态响应快,在电力变换器中备受关注。然而,传统FCS-MPC对模型参数依赖性强。为此,本文提出一种基于有限集子空间预测器的电压控制策略,旨在提升系统鲁棒性的同时保留FCS-MPC的优点。该方法在各运行点采用子空间预测器替代物理模型,仅利用历史输入输出数据直接根据参考输出轨迹获取最优控制量,无需知晓系统结构与负载参数,有效避免了参数变化导致的性能下降。三电平中点钳位逆变器实验验证了所提方法的有效性。
English Abstract
Finite control-set model predictive control (FCS-MPC) is regarded as a promising control method in power converters due to its excellent performance, simple implementation, and fast dynamic response. However, standard model predictive control suffers from a high dependency on model parameters. To solve this issue, a novel finite set subspace predictor-based predictive voltage control strategy is proposed in this article, aiming to improve the robustness of the controlled system while maintaining the attractive features of standard FCS-MPC. Specifically, by replacing the original physical model with a subspace predictor at each operating point, the optimal control input can be directly obtained according to the reference output trajectory, and the control action can be executed without knowing the system structure and load parameters. This method uses only historical input–output data in the prediction process, thereby avoiding performance degradation caused by variations in load parameters. Finally, experiments on a three-level neutral-point clamped inverter validate the proposed design.
S
SunView 深度解读
该基于子空间预测器的预测电压控制技术对阳光电源ST系列储能变流器和SG系列光伏逆变器具有重要应用价值。传统MPC对参数依赖性强,在储能系统电池老化、光伏逆变器负载波动等工况下性能易劣化。该方法仅依赖历史数据即可实现最优控制,无需精确模型参数,可显著提升PowerTitan大型储能系统在全生命周期的控制鲁棒性。结合阳光电源三电平拓扑和SiC器件技术,该算法可优化中点电位平衡控制,减少参数整定工作量。同时适用于车载OBC和充电桩等多工况应用场景,为产品智能化和免维护运行提供技术支撑,契合iSolarCloud平台的预测性维护理念。