← 返回

基于新型矢量选择方案的三电平NPC逆变器供电PMSM驱动模型预测控制

Model Predictive Control of Three-Level NPC Inverter-Fed PMSM Drives Based on a Novel Vector-Selection Scheme

作者 Xiaomei Tang · Shuangxia Niu · K. T. Chau · Xin Yuan · W. L. Chan
期刊 IEEE Journal of Emerging and Selected Topics in Power Electronics
出版日期 2024年12月
技术分类 储能系统技术
技术标签 储能系统 SiC器件 三电平 模型预测控制MPC
相关度评分 ★★★★★ 5.0 / 5.0
关键词 模型预测控制 多矢量模式 共模电压 中性点电位 新方案
语言:

中文摘要

现有模型预测控制(MPC)方法多采用多矢量模式以提升稳态性能,但增加了系统复杂性,尤其对三电平逆变器而言。此外,当考虑共模电压(CMV)与中点电位(NPP)不平衡问题时,需评估多种矢量组合并繁琐调节权重系数。本文提出一种基于多矢量的新型MPC方案,通过将参考电压矢量映射至子六边形以缩小候选区域,并在成本函数中优化所选矢量的作用时间,最小化预测与合成矢量间的误差。同时重构高CMV幅值的基本矢量,并引入滞环控制器抑制NPP偏移。实验结果表明,该方法优于其他多矢量MPC算法。

English Abstract

Existing model predictive control (MPC) methods mostly adopt multivector mode to achieve better steady-state control performance. But this increases system complexity, especially for three-level inverters. In addition, various vector combinations need to be evaluated in the cost function, and cumbersome tuning of weighting factors is also involved when the common-mode voltage (CMV) and neutral point potential (NPP) imbalance issues are considered. This article proposes a novel multivector-based MPC scheme to deal with these challenges. The key is to map the reference voltage vector to sub-hexagons, and the candidate region is narrowed down. Then, the dwell time of the determined voltage vectors is obtained from the cost function, which minimizes the error between the predicted reference voltage vector and the synthesis vector. In addition, the basic vectors with higher CMV amplitudes are reconstructed, and the NPP imbalance is addressed due to the employment of a hysteresis controller. Experimental results verify that the proposed method has superior performance to other multivector MPC algorithms.
S

SunView 深度解读

该三电平NPC逆变器MPC控制技术对阳光电源ST系列储能变流器和新能源汽车电机驱动产品具有重要应用价值。新型矢量选择方案通过子六边形映射简化候选矢量搜索,可显著降低PowerTitan大型储能系统的控制器计算负荷,提升实时响应性能。共模电压抑制与中点电位平衡策略可直接应用于三电平拓扑储能变流器,延长SiC功率模块寿命并降低EMI滤波成本。多矢量优化方法相比传统单矢量MPC能改善稳态电流谐波,提升PMSM驱动效率,适用于车载OBC和充电桩功率变换单元。该算法框架可与阳光现有GFM/GFL控制技术融合,增强储能系统并网电能质量与动态稳定性。