找到 2 条结果
预测不确定性建模技术及概率型风速与风电功率预测评估指标综述
A review of predictive uncertainty modeling techniques and evaluation metrics in probabilistic wind speed and wind power forecasting
Yun Wanga · Fan Zhang · Hongbo Koua · Runmin Zoua 等7人 · Applied Energy · 2025年1月 · Vol.396
摘要 鉴于风能资源具有显著的变异性,解决风能预测中固有的不确定性至关重要。因此,研究人员已开发出多种概率模型,这些模型为理解风能的波动特性提供了有价值的见解,并提升了预测的准确性。本文旨在分析预测不确定性中不同类型不确定性的意义,并对风速与风电功率预测的概率方法进行系统而全面的综述。特别地,本文详细考察了用于生成预测区间(作为预测不确定性的一种通用表示形式)的代表性模型结构。此外,本综述还探讨了用于评估概率预测质量的各类评价指标,并对其数学表达、时间复杂度以及适用条件进行了分析。这些评价指标在判...
解读: 该风电预测不确定性建模技术对阳光电源储能系统具有重要应用价值。通过概率预测方法可优化ST系列PCS的充放电策略,提升PowerTitan储能系统在风储耦合场景下的能量管理精度。预测区间技术可为iSolarCloud平台提供更可靠的风电波动预判能力,辅助GFM/VSG控制策略实现更平滑的功率调节。不确...
MFFDM-WLS:一种基于多粒度特征的时序分层风速时间序列一致性预测方法
MFFDM-WLS: A multi-granularity feature-based coherent forecasting method for temporal hierarchical wind speed time series
Yun Wang · Xiaocong Duana · Fan Zhang · Guang Wua 等7人 · Applied Energy · 2025年1月 · Vol.400
摘要 风能因其清洁和可持续的特性,已成为全球能源系统的重要组成部分。然而,风速的间歇性和波动性给风电出力带来了显著的不确定性,对电网并网造成了挑战。此外,与单一粒度预测相比,多粒度风速预测能够提供更丰富的信息,更有利于风电场的运行与规划。因此,为进一步提高风速预测的准确性与可靠性,并获得满足分层一致性的多粒度预测结果,本文提出了一种针对时序分层风速时间序列的基于多粒度特征的一致性预测方法MFFDM-WLS。首先,提出一种基于多粒度特征融合的深度模型(MFFDM),用于生成基础预测值。MFFDM采...
解读: 该多粒度风速预测技术对阳光电源储能系统(ST系列PCS、PowerTitan)具有重要应用价值。通过时间层级一致性预测,可优化iSolarCloud平台的预测性维护算法,提升风储协同控制精度。多粒度特征融合方法可应用于GFM/GFL控制策略的自适应切换决策,增强电网友好型并网能力。概率预测结果可为E...