找到 2 条结果
农业光伏系统的控制策略:平衡发电量与农作物产量以实现可持续发展
Control strategies for agricultural photovoltaic systems: Balancing electricity generation and agricultural yield for sustainable development
Bo Tian · Ningbo Wang · Lu Liu · Yuanxin Lin 等8人 · Solar Energy · 2025年1月 · Vol.288
摘要 不同的控制策略对农业光伏(PV)系统的整体性能具有显著影响。本研究采用人工神经网络(ANN)算法对数值天气预报(NWP)模型的太阳辐照度预测结果进行修正,并提出了以实现最优农作物产量和最优发电量为目标的创新性控制策略。结合法国的一个农业光伏项目,研究了不同控制策略下农业光伏系统的发电量、作物产量以及土地当量比(LER)。结果表明,与传统的太阳跟踪控制策略相比,最优产量控制策略的年发电量减少23%,LER值平均下降10%。而最优发电量控制策略相较于传统太阳跟踪控制策略,最高可实现单日发电增益...
解读: 该农光互补控制策略研究对阳光电源SG系列光伏逆变器及iSolarCloud平台具有重要应用价值。文中基于ANN算法的辐照预测与动态控制策略,可集成至我司MPPT优化算法中,实现发电与农业产出的智能平衡。研究显示优化发电策略可提升15.6%年发电量,验证了智能控制的经济性。建议将该多目标优化思路融入i...
多尺度协同建模与基于深度学习的风冷数据中心热预测:热管理的新视角
Multi-scale collaborative modeling and deep learning-based thermal prediction for air-cooled data centers: An innovative insight for thermal management
Ningbo Wang · Yanhua Guo · Congqi Huang · Bo Tian 等5人 · Applied Energy · 2025年1月 · Vol.377
摘要 研究数据中心(DC)的热环境及温度分布对于应对设备故障或环境变化等突发事件至关重要。然而,构建从数据中心机房级到芯片级的全尺寸仿真模型面临巨大挑战。本文提出一种独特的方法,将多尺度协同建模与深度学习技术相结合,用于风冷数据中心的热预测。通过将父模型的仿真结果作为子模型的边界条件,构建了数据中心多尺度仿真模型,显著降低了模型复杂度和计算资源消耗。利用实验数据,对不同尺度的模型分别进行了验证。研究了不同冷却策略、送风温度和送风流量对多尺度仿真模型的影响。基于参数化仿真方法,构建了用于训练数据驱...
解读: 该多尺度协同建模与深度学习热管理技术对阳光电源储能系统具有重要应用价值。ST系列PCS和PowerTitan等大型储能产品面临电池簇、模组到电芯的多层级热管理挑战,可借鉴其多尺度仿真方法降低建模复杂度。CNN-BiLSTM-Attention神经网络可集成至iSolarCloud平台,实现储能柜温度...