← 返回
多尺度协同建模与基于深度学习的风冷数据中心热预测:热管理的新视角
Multi-scale collaborative modeling and deep learning-based thermal prediction for air-cooled data centers: An innovative insight for thermal management
| 作者 | Ningbo Wang · Yanhua Guo · Congqi Huang · Bo Tian · Shuangquan Shao |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 377 卷 |
| 技术分类 | 智能化与AI应用 |
| 技术标签 | 深度学习 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | A multi-scale simulation model from the [data center](https://www.sciencedirect.com/topics/earth-and-planetary-sciences/data-center "Learn more about data center from ScienceDirect's AI-generated Topic Pages") room to the chip was developed. |
语言:
中文摘要
摘要 研究数据中心(DC)的热环境及温度分布对于应对设备故障或环境变化等突发事件至关重要。然而,构建从数据中心机房级到芯片级的全尺寸仿真模型面临巨大挑战。本文提出一种独特的方法,将多尺度协同建模与深度学习技术相结合,用于风冷数据中心的热预测。通过将父模型的仿真结果作为子模型的边界条件,构建了数据中心多尺度仿真模型,显著降低了模型复杂度和计算资源消耗。利用实验数据,对不同尺度的模型分别进行了验证。研究了不同冷却策略、送风温度和送风流量对多尺度仿真模型的影响。基于参数化仿真方法,构建了用于训练数据驱动模型的数据集。同时,提出了一种CNN-BiLSTM-Attention神经网络模型,用于预测CPU最高温度,并通过贝叶斯优化方法对神经网络的超参数进行优化。耦合多尺度模型与深度学习预测模型的预测结果表明,绝对误差控制在±0.1 K以内,模型评估指标R²值高达0.9899。本研究结果为提升风冷数据中心的热管理水平提供了有价值的见解,为未来更高效、更具韧性的数据中心运行奠定了基础。
English Abstract
Abstract Investigating the data center (DC) thermal environment and temperature distribution is crucial to responding to unforeseen events such as equipment failure or environmental changes. However, building full-scale simulation models from DC room level to chip level faces significant challenges. In this paper, we propose a distinctive approach that combines multi-scale collaborative modeling with deep learning techniques for thermal prediction in air-cooled DCs. By taking the simulation results of the parent model as the boundary conditions of the child model, we constructed the DC multi-scale simulation model, which significantly reduces the model complexity and computational resources. Leveraging experimental data, the models at different scales were validated separately. The effects of different cooling strategies, air supply temperatures and air supply flow rates on multi-scale simulation models were investigated. Based on the parametric simulation approach, datasets for training data-driven models are constructed. Simultaneously, we propose the CNN-BiLSTM-Attention neural network model to predict the maximum CPU temperature and optimize the hyperparameters of the neural network through by Bayesian optimization . The prediction results of the coupled multi-scale model and the deep learning prediction model show that the absolute error is controlled within ±0.1 K, and the R 2 value of the model evaluation metric is as high as 0.9899. Herein, the results provide valuable insights for enhancing thermal management in air-cooled DCs, paving the way for more efficient and resilient DC operations in the future.
S
SunView 深度解读
该多尺度协同建模与深度学习热管理技术对阳光电源储能系统具有重要应用价值。ST系列PCS和PowerTitan等大型储能产品面临电池簇、模组到电芯的多层级热管理挑战,可借鉴其多尺度仿真方法降低建模复杂度。CNN-BiLSTM-Attention神经网络可集成至iSolarCloud平台,实现储能柜温度预测性维护,优化风冷/液冷策略。该方法同样适用于充电桩功率模块热管理及SiC/GaN器件结温预测,提升系统可靠性与能效,为智能运维提供AI赋能方案。