找到 2 条结果
一种考虑单体电池运行状态的锂离子电池健康状态贝叶斯迁移学习评估框架
A Bayesian transfer learning framework for assessing health status of Lithium-ion batteries considering individual battery operating states
Jiarui Zhang · Lei Mao · Zhongyong Liu · Kun Yu 等5人 · Applied Energy · 2025年1月 · Vol.382
摘要 锂离子电池(LIBs)健康状态(SOH)的快速准确评估对于实现高效的电池监测与管理具有重要意义。LIBs的退化是一个复杂的过程,每一块电池的退化路径均具有独特性,受到内部和外部多种因素共同影响。然而,现有方法通常将每块电池视为独立个体处理,未能充分挖掘和利用各单体电池的独特特征。为克服这一局限性,本研究提出了一种贝叶斯迁移学习框架,用于建模锂离子电池特有的退化过程,从而完成对SOH的评估。具体而言,构建了一个混合效应模型(MEM)以描述电池健康状态的退化过程,该模型能够捕捉不同电池之间的异...
解读: 该贝叶斯迁移学习框架对阳光电源ST系列储能变流器及PowerTitan储能系统的电池管理具有重要价值。混合效应模型可捕捉单体电池差异性,实现精准SOH评估,优化BMS策略。三种参数更新策略适配不同应用场景,可提升iSolarCloud平台预测性维护能力。该方法兼容循环老化与日历老化,适用于大规模储能...
基于动态聚类的分层调控策略用于大规模5G基站经济优化
Hierarchical regulation strategy based on dynamic clustering for economic optimization of large-scale 5G base stations
Yunfei Mu · Xinyang Jiang · Xiaoyan Ma · Jiarui Zhang 等7人 · Applied Energy · 2025年1月 · Vol.377
摘要 利用5G基站(BSs)的备用储能潜力进行经济性调控,是为电力系统提供灵活性并降低运行成本的重要策略。然而,大规模基站集中式调控的决策变量维度较高,导致计算复杂度显著增加。此外,传统的聚类方法虽可提升求解速度,却未能考虑由潮汐效应和5G基站休眠机制引起的调控潜力在时空上的动态变化,这一局限性影响了调控的准确性以及基站可调潜力的充分利用。为此,本文提出一种面向大规模5G基站经济优化的基于动态聚类的分层调控策略,该策略在簇级和个体两个层级对基站进行调控。针对5G基站调控潜力的动态变化特性,提出一...
解读: 该5G基站储能分层调控技术对阳光电源ST系列储能变流器及PowerTitan系统具有重要应用价值。动态聚类算法可优化大规模分布式储能协调控制,降低计算复杂度至2.34%,提升调度精度9.32%。技术思路可应用于iSolarCloud平台的多站点储能聚合调度,结合GFM控制策略实现电网灵活性资源整合。...