← 返回
储能系统技术 储能系统 ★ 5.0

基于动态聚类的分层调控策略用于大规模5G基站经济优化

Hierarchical regulation strategy based on dynamic clustering for economic optimization of large-scale 5G base stations

作者 Yunfei Mu · Xinyang Jiang · Xiaoyan Ma · Jiarui Zhang · Hongjie Ji · Xiaolong Jin · Boren Yao
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 377 卷
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 A dynamic clustering method to aggregates BSs and modify clusters dynamically is proposed.
语言:

中文摘要

摘要 利用5G基站(BSs)的备用储能潜力进行经济性调控,是为电力系统提供灵活性并降低运行成本的重要策略。然而,大规模基站集中式调控的决策变量维度较高,导致计算复杂度显著增加。此外,传统的聚类方法虽可提升求解速度,却未能考虑由潮汐效应和5G基站休眠机制引起的调控潜力在时空上的动态变化,这一局限性影响了调控的准确性以及基站可调潜力的充分利用。为此,本文提出一种面向大规模5G基站经济优化的基于动态聚类的分层调控策略,该策略在簇级和个体两个层级对基站进行调控。针对5G基站调控潜力的动态变化特性,提出一种基于K-means的动态聚类方法,综合考虑基站在时空维度上的可调容量与地理位置信息,从而降低计算规模。该方法根据可调容量的变化实时调整聚类结果,并进行动态聚合建模。进一步地,在簇级和个体级分别建立了聚类调控经济优化模型和簇内功率分配控制模型,以求解相应的调控方案。由于整体策略中聚类与调控之间存在耦合关系,通过动态聚类、簇级调控与簇内分配的迭代过程,确定最优的聚类结构与调控方案。本文对测试区域内2916个基站进行了仿真验证,结果表明,所提策略的计算时间降至集中式调控的2.34%;可调容量和调控方案的最大误差分别降低了21.93%和9.32%。研究结果证明,所提出的策略在保证调控精度和可调潜力利用率的同时,显著提升了大规模5G基站调控的计算效率。

English Abstract

Abstract Utilizing the backup energy storage potential of 5G base stations (BSs) for economic regulation is an essential strategy to provide flexibility to the power grid and reduce operational costs. However, the dimensionality of the decision variables for centralized regulation of large-scale BSs is substantial, thereby increasing the computational complexity. Furthermore, the traditional clustering method, which could enhance solution speed, fails to account for the spatiotemporal dynamics of the regulation potential induced by the tidal effect and the sleep mechanism of 5G BSs. This limitation affects the accuracy of regulation and the utilization of the BSs' regulable potential. Therefore, a hierarchical regulation strategy based on dynamic clustering for economic optimization of large-scale 5G BSs is proposed, where BSs are regulated at two levels: cluster and individual. Focusing on the changes in 5G BSs' regulation potential, a dynamic clustering method based on K-means is proposed, which considers the regulable capacity and geographical location of BSs over time and space, thereby reducing the computational scale. The method accounts for changes in the regulable capacity to modify clusters and dynamically aggregates them for modeling. Furthermore, the clustering regulation economic optimization model and in-cluster power allocation control model are established respectively at the cluster and individual levels to solve the corresponding regulation schemes. Due to the interaction between the clustering and regulation in the overall strategy, the optimal clustering and regulation scheme are determined through the iteration of dynamic clustering, clustering regulation and in-cluster allocation. The simulation with 2916 BSs in a test area is conducted. The results show that the computation time of the proposed strategy is reduced to 2.34 % of the centralized regulation. The maximum error of the regulable capacity and regulation scheme decrease by 21.93 % and 9.32 %. It demonstrates that the proposed strategy enhances the speed of large-scale 5G BSs regulation while ensuring the accuracy of regulation and utilization of the regulable potential.
S

SunView 深度解读

该5G基站储能分层调控技术对阳光电源ST系列储能变流器及PowerTitan系统具有重要应用价值。动态聚类算法可优化大规模分布式储能协调控制,降低计算复杂度至2.34%,提升调度精度9.32%。技术思路可应用于iSolarCloud平台的多站点储能聚合调度,结合GFM控制策略实现电网灵活性资源整合。分层优化模型为充电站网络、工商业储能集群的经济调度提供算法创新,增强阳光电源在源网荷储协同优化领域的技术竞争力。