找到 3 条结果
一种基于神经网络的高效图像处理方法用于透明质子交换膜燃料电池中的水量化
An efficient neural-network-based image processing method for water quantification in a transparent proton exchange membrane fuel cell
Sai-Jie Cai · Mu-Chen Wang1 · Jun-Hong Chen · Zhuo Zhang 等6人 · Applied Energy · 2025年1月 · Vol.382
水管理和热管理对质子交换膜燃料电池的性能至关重要。本文设计了一种活性面积为25 cm²的透明单电池,用于在不同工况下表征水分布特性。在电池的设计与组装过程中,该方案克服了电池密封方面的技术挑战。通过神经网络对不同运行条件下录制的视频进行逐帧分析,实现了液态水的量化。为了进行对比分析,采用了阈值处理方法,并详细讨论了其优缺点。利用基于阈值处理结果生成的包含137帧的高质量训练集对神经网络进行训练。本研究探讨了温度、电压以及流场结构设计对水积累的影响。基于神经网络的语义分割方法在复杂工况下表现出优异...
解读: 该神经网络图像处理技术对阳光电源储能系统热管理具有重要借鉴价值。ST系列PCS和PowerTitan储能系统运行中的温度监测与水汽管理是关键挑战,文中基于语义分割的实时监测方法可应用于电池簇热失控预警。透明化设计理念启发iSolarCloud平台开发视觉诊断模块,通过热成像与AI识别实现储能柜内异常...
基于I-V曲线成像与双流深度神经网络的光伏系统遮挡类型及严重程度诊断
Shading type and severity diagnosis in photovoltaic systems via I-V curve imaging and two-stream deep neural network
Zengxiang Hea · Hong Cai Chen · Shuo Shan · Yihua Hu 等6人 · Energy Conversion and Management · 2025年1月 · Vol.324
摘要 遮挡是光伏(PV)系统中最常见的异常现象之一,会导致功率损失和热点效应。目前大多数研究仅能实现遮挡检测,而无法进一步诊断遮挡的类型和严重程度。本文提出了一种结合I-V曲线成像与双流深度神经网络(DNN)的有效方法,用于诊断遮挡类型,并估计实际运行光伏系统中五种常见遮挡类型的严重程度。该方法首先对光伏组串的I-V曲线进行重采样,并转换至标准测试条件(STC),以消除数据尺度和环境因素对遮挡诊断结果的影响。随后,采用一种称为格拉米安角和场(Gramian angular summation f...
解读: 该阴影诊断技术对阳光电源SG系列光伏逆变器及iSolarCloud平台具有重要应用价值。通过I-V曲线成像与双流深度神经网络,可实现阴影类型识别与严重程度量化评估,弥补现有MPPT优化技术仅能检测异常但无法精准诊断的不足。建议将GASF时序成像与LSTM-CNN融合算法集成至智能运维平台,结合组串级...
客座编辑特刊:面向零排放电动交通的电机驱动先进技术
Guest Editorial Special Issue on Advanced Technologies of Motor Drives for Zero-Emission E-Mobility
Yunwei Ryan Li · Wei Hua · Luca Zarri · IEEE Journal of Emerging and Selected Topics in Power Electronics · 2025年4月
为实现《巴黎协定》将全球温升控制在2°C以内的目标,电动交通(e-mobility)迅速发展。然而,其电机驱动系统所耗电能仍部分来自化石能源,因此提升驱动系统能效成为实现净零排放的关键。本期特刊聚焦电机驱动在新材料、谐波抑制、电磁干扰抑制、智能控制、故障容错、能量管理及系统设计等方面的前沿进展,收录43篇高质量论文,涵盖提高能效的多种技术路径,推动电动交通可持续发展。
解读: 该特刊聚焦的电机驱动先进技术对阳光电源新能源汽车产品线具有直接应用价值。其中SiC/GaN器件应用、三电平拓扑技术可直接优化车载OBC充电机和电机驱动系统的功率密度与效率;PWM控制、SVPWM及模型预测控制MPC等智能控制算法可提升电机驱动精度和动态响应;谐波抑制与EMI抑制技术可改善充电桩的电能...