找到 2 条结果
基于深度时空相关性挖掘的风电场群短期功率预测方法
Short-term power prediction method of wind farm cluster based on deep spatiotemporal correlation mining
Da Wang · Mao Yang · Wei Zhang · Chenglian Ma 等5人 · Applied Energy · 2025年1月 · Vol.380
摘要 本文提出了一种基于时空相关性挖掘的风电场群短期功率预测方法。首先,建立了一种考虑风速和风向的空间相关性量化指标。基于该指标,构建了包含虚拟节点的图结构以表征风电场之间的空间关联关系,其中虚拟节点为输入数据增添了额外的有效信息。随后,采用图注意力网络提取风电场群的空间特征,并构建双向循环残差网络以提取时间特征,同时引入多任务学习算法优化网络输出。最后,提出了一种针对虚假预测分量的评价指标,用于评估由正负误差累积所导致的预测偏差,为发电计划的制定提供了参考依据。利用中国21个风电场群的实际数据...
解读: 该风电集群时空关联预测技术对阳光电源储能系统具有重要应用价值。通过图注意力网络挖掘风电场空间关联和双向循环网络提取时序特征,可显著提升ST系列PCS的功率预测精度至89.69%,优化PowerTitan储能系统的充放电策略。虚拟节点增强的图结构建模方法可集成至iSolarCloud平台,实现风储协同...
FDCA-DSTGCN:一种基于频域信息增益与动态趋势感知的风电场群功率日前预测模型
FDCA-DSTGCN: A Wind Farm Cluster Power Day-Ahead Prediction Model Based on Frequency Domain Information Gain and Dynamic Trend Sensing
Mao Yang · Jiajun Niu · Bo Wang · Dawei Huang 等6人 · IEEE Transactions on Sustainable Energy · 2025年5月
准确的风电场群功率预测对大规模风电接入的新一代电力系统至关重要。现有建模方法忽略风向及频域信息的作用,导致空间信息利用不足,预测精度提升受限。为此,本文提出一种融合频域信息增益与动态趋势感知的风电场群日前功率预测模型。首先,基于图论与多信息渐进融合进行集群划分并设置虚拟信息节点;其次,提出时间窗内主导风向识别方法,构建基于主导风向与风速的动态加权有向图结构;进而,设计引入频域增益通道注意力机制的动态时空图卷积网络(FDCA-DSTGCN)完成预测。在中国内蒙古某风电场群的实证结果表明,所提方法较...
解读: 该风电场群功率预测技术对阳光电源储能与电网侧产品具有重要应用价值。首先可应用于ST系列储能系统的调度优化,通过频域信息增益提升储能容量配置精度,优化充放电策略。其次可集成到iSolarCloud平台,为新能源电站群的智能运维提供更准确的功率预测支持。该模型的动态时空图卷积网络架构也可迁移应用于光伏电...