找到 2 条结果
一种基于TKAN的光伏阵列输出功率异常检测方法
An Anomaly Detection Method for the Output Power of Photovoltaic Arrays Based on TKAN
Tingting Pei · Lei Jiang · Wei Chen · Haiyan Zhang 等6人 · IEEE Journal of Photovoltaics · 2025年8月
当今,光伏发电系统面临的最大挑战之一是使其保持在理想的发电效率下运行。为实现这一目标,对光伏阵列输出功率进行异常检测对于确保系统的可靠性和安全性至关重要。本文提出了一种基于时间柯尔莫哥洛夫 - 阿诺尔德网络(TKANs)的光伏阵列输出功率异常检测方法。首先,通过选取光伏阵列输出功率、环境温度、组件温度和辐照度的时间序列作为输入特征,构建光伏阵列参数数据集。其次,通过获取环境信息和运行参数的边界值,并将其缩放到 0 - 1 的范围,对光伏阵列参数数据集进行特征归一化处理。然后,使用 TKAN 神经...
解读: 该TKAN异常检测技术对阳光电源iSolarCloud智能运维平台具有直接应用价值。可集成至SG系列光伏逆变器的智能诊断模块,通过时序特征分析实时监测组串级输出功率异常,提前识别遮挡、热斑、组件失效等故障模式。相比传统阈值法,该方法的动态权重机制能适应不同天气条件下的功率波动特性,显著降低误报率。可...
MicroCrystalNet:基于扫描电镜岩相的高效可解释卷积神经网络微晶分类
MicroCrystalNet: An Efficient and Explainable CNN for Microcrystal Classification Using SEM Petrography
Mohammed Yaqoob · Mohammed Yusuf Ansari · Mohammed Ishaq · Issac Sujay Anand John Jayachandran 等6人 · IEEE Access · 2025年1月
微晶岩石纹理形态表征通常依赖扫描电镜SEM图像的视觉解释和人工测量,存在主观性、低效率、采样偏差和数据丢失问题。本文引入基于深度学习架构的最先进计算机视觉流程,用于从SEM图像分割和分类单个微晶。初步应用于低镁方解石碳酸盐岩,实例分割使用Meta的Segment Anything Model(SAM)定制调优版本。训练和测试分类器使用全球研究的48张不同碳酸盐微纹理SEM图像,共1852个微晶根据双重分类方案标记,包括晶体形状(菱形、多面体、无定形、球形)和晶面清晰度(自形至半自形、他形),共四...
解读: 该微晶图像分类技术可应用于阳光电源功率器件和材料分析。阳光SiC和GaN器件封装需要微观结构检测和质量控制。该MicroCrystalNet的高精度分割和分类能力可用于阳光功率模块的SEM质量检验,自动识别焊接缺陷、晶界异常和材料瑕疵。在储能电池材料研究中,该深度学习方法可加速电极材料和隔膜的微观表...