← 返回
光伏发电技术 ★ 5.0

一种基于TKAN的光伏阵列输出功率异常检测方法

An Anomaly Detection Method for the Output Power of Photovoltaic Arrays Based on TKAN

作者 Tingting Pei · Lei Jiang · Wei Chen · Haiyan Zhang · Jian Zhang · Lihan Xin
期刊 IEEE Journal of Photovoltaics
出版日期 2025年8月
技术分类 光伏发电技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 光伏阵列 输出功率 异常检测 时间柯尔莫哥洛夫 - 阿诺德网络 特征归一化
语言:

中文摘要

当今,光伏发电系统面临的最大挑战之一是使其保持在理想的发电效率下运行。为实现这一目标,对光伏阵列输出功率进行异常检测对于确保系统的可靠性和安全性至关重要。本文提出了一种基于时间柯尔莫哥洛夫 - 阿诺尔德网络(TKANs)的光伏阵列输出功率异常检测方法。首先,通过选取光伏阵列输出功率、环境温度、组件温度和辐照度的时间序列作为输入特征,构建光伏阵列参数数据集。其次,通过获取环境信息和运行参数的边界值,并将其缩放到 0 - 1 的范围,对光伏阵列参数数据集进行特征归一化处理。然后,使用 TKAN 神经网络对处理后的数据集进行训练,得到光伏阵列输出功率异常检测模型。最后,将所提出的方法与孤立森林、<inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$K$</tex-math></inline-formula> - 均值和长短期记忆网络等其他三种方法进行对比分析,验证了其可靠性和优越性。此外,在自建光伏电站中验证了该方法的有效性。

English Abstract

One of the greatest challenges facing photovoltaic (PV) power generation systems today is maintaining their operation at the desired power generation efficiency. To achieve this goal, the anomaly detection of the output power of PV arrays is crucial for ensuring reliability and safety. This article proposes an anomaly detection for the output power of PV arrays based on temporal Kolmogorov–Arnold networks (TKANs). First, a dataset of PV array parameters is constructed by selecting the time series of output power, ambient temperature, component temperature, and irradiance of the PV array as input features. Second, the PV array parameter dataset undergoes feature normalization by obtaining the boundary values of environmental information and operating parameters, and scaling them to the range of 0–1. Then, the processed dataset is trained using the TKAN neural network to obtain the anomaly detection model of the output power of the PV array. Finally, the proposed method is compared and analyzed with three other methods, such as Isolation Forest, K -means, and long short-term memory, verifying its reliability and superiority. In addition, the effectiveness of the proposed method is validated in a self-built PV power plant.
S

SunView 深度解读

该TKAN异常检测技术对阳光电源iSolarCloud智能运维平台具有直接应用价值。可集成至SG系列光伏逆变器的智能诊断模块,通过时序特征分析实时监测组串级输出功率异常,提前识别遮挡、热斑、组件失效等故障模式。相比传统阈值法,该方法的动态权重机制能适应不同天气条件下的功率波动特性,显著降低误报率。可与现有MPPT算法协同工作,在PowerTitan大型储能系统中实现光储协调优化。建议将该深度学习模型部署于边缘计算网关,结合阳光电源海量运行数据进行迁移学习,构建预测性维护体系,提升电站全生命周期发电效率。