找到 22 条结果
多尺度融合图卷积网络用于多站点光伏功率预测
Multi-scale fused Graph Convolutional Network for multi-site photovoltaic power forecasting
Qi Sim · Xinze Zhang · Siyue Yang · Liang Shen 等5人 · Energy Conversion and Management · 2025年1月 · Vol.333
摘要 近年来,通过精细挖掘时空关系的多站点光伏功率预测因其在降低建模成本和提高预测精度方面的潜力而受到广泛关注。然而,现有方法通常忽略了在真实场景中多个站点之间跨不同时间尺度存在的复杂且动态变化的时空相关性。为解决这一局限性,本研究从多尺度视角提出了一种新颖且有效的模型:多尺度融合图卷积网络(Multi-Scale Fused Graph Convolutional Neural Network, MSF-GCN)。MSF-GCN引入了一个多图卷积(MGCN)模块,该模块结合预定义图与可自适应学...
解读: 该多尺度图卷积网络技术对阳光电源iSolarCloud智慧运维平台具有重要应用价值。MSF-GCN模型通过多图卷积捕获分布式光伏电站间空间依赖关系,结合多尺度时序分解,可显著提升SG系列逆变器集群的功率预测精度(MAE提升13.21%)。其自适应图学习机制能优化PowerTitan储能系统的充放电策...
一种集成实验与数值研究的竹节形流场设计下风冷式质子交换膜燃料电池性能及传热传质动力学
An integrated experimental and numerical investigation of performance and heat-mass transport dynamics in air-cooled PEMFCs with a bamboo-shaped flow field design
Kai-Qi Zhu · Quan Ding · Ben-Xi Zhang · Jiang-Hai Xu 等8人 · Applied Energy · 2025年1月 · Vol.377
摘要 风冷式质子交换膜燃料电池(PEMFC)中复杂的传热传质耦合现象以及物理场分布不均的问题,严重影响其功率密度和水热管理性能。作为关键部件,阴极流场在燃料供给、散热以及水传输方面对风冷式PEMFC起着至关重要的作用。优化流场结构设计是应对上述挑战的关键策略。本研究提出了一种创新的竹节形流场设计,并在25 cm²的单电池中进行了实验验证,结果证明该设计能有效提升风冷式PEMFC的传热传质能力与功率密度,同时降低供气能耗。此外,还建立了三维多相数值模型,用于深入探究该流场结构下液态水、反应物和热量...
解读: 该燃料电池热质传输优化技术对阳光电源氢能业务具有重要借鉴价值。竹节型流场设计通过分段加速和涡流区优化实现5.45%功率密度提升和4.17%能效增益,其多物理场耦合仿真方法可应用于公司储能PCS的热管理优化。研究中的熵分析法和非均匀流场设计理念,可迁移至SiC功率器件散热结构设计,提升ST系列PCS和...
第 2 / 2 页