← 返回
光伏发电技术 ★ 5.0

多尺度融合图卷积网络用于多站点光伏功率预测

Multi-scale fused Graph Convolutional Network for multi-site photovoltaic power forecasting

语言:

中文摘要

摘要 近年来,通过精细挖掘时空关系的多站点光伏功率预测因其在降低建模成本和提高预测精度方面的潜力而受到广泛关注。然而,现有方法通常忽略了在真实场景中多个站点之间跨不同时间尺度存在的复杂且动态变化的时空相关性。为解决这一局限性,本研究从多尺度视角提出了一种新颖且有效的模型:多尺度融合图卷积网络(Multi-Scale Fused Graph Convolutional Neural Network, MSF-GCN)。MSF-GCN引入了一个多图卷积(MGCN)模块,该模块结合预定义图与可自适应学习的图,以捕捉基于不同时间尺度观测数据下光伏站点之间的多样化空间依赖关系。此外,设计了一个轻量级的分解双向融合(Decomposed-Bidirectional-Fusion, DBF)模块,用于提取跨尺度与尺度内部的相关性。该模块允许来自低尺度的细粒度信息增强高尺度下的微观特征提取,同时高尺度提供的粗粒度时间变化则为低尺度赋予对发电模式的宏观视角。进一步地,模型采用多个结构相同但权重不共享的预测器,以同时利用多尺度数据中的独特特征及其互补性的预测能力。在两个公开数据集上的实验结果表明,所提出的MSF-GCN在保持良好运行效率的同时,在预测精度方面始终优于现有方法。在预测精度方面,本模型相较于最先进的时空模型平均提升了13.21%(MAE)和28.48%(MSE)。通过对MSF-GCN中多尺度结构、MGCN模块和DBF模块进行消融实验,其MAE分别平均上升了55.86%、47.49%和44.55%,进一步验证了所设计结构的有效性。

English Abstract

Abstract Multi-site photovoltaic power forecasting with refined spatiotemporal relationship mining has recently gained significant attention due to its potential to reduce modeling costs and improve accuracy. However, existing approaches often overlook the complex and varying spatiotemporal correlations across different time scales among multiple sites in real-world scenarios. To address this limitation, this study proposes a novel and effective model from a multi-scale perspective: the Multi-Scale Fused Graph Convolutional Neural Network (MSF-GCN). The MSF-GCN incorporates a Multi-Graph Convolution (MGCN) block that utilizes both predefined and adaptive learnable graphs to capture diverse spatial dependencies between photovoltaic sites based on data observed across different time scales. Additionally, a lightweight Decomposed-Bidirectional-Fusion (DBF) block is designed to extract inter- and intra-scale correlations. This block allows fine-grained information from low scales to enhance the extraction of microscopic features at higher scales, while coarse temporal variations from high scales provide lower ones with a macroscopic view of power generation patterns. Furthermore, the model employs multi-predictors with identical structures but unshared weights to leverage both distinct features and complementary forecasting capabilities from multi-scale data simultaneously. Experimental results on two open-access datasets demonstrate that the proposed MSF-GCN consistently outperforms existing methods in terms of accuracy while maintaining favorable run-time efficiency. In terms of prediction accuracy, our model outperforms the state-of-the-art spatiotemporal model by an average of 13.21% for MAE and 28.48% for MSE . The average increase in MAE of 55.86%, 47.49%, and 44.55% resulting from the ablation of the multi-scale, the MGCN, and the DBF in MSF-GCN, respectively, further justifies the effectiveness of the designed structures.
S

SunView 深度解读

该多尺度图卷积网络技术对阳光电源iSolarCloud智慧运维平台具有重要应用价值。MSF-GCN模型通过多图卷积捕获分布式光伏电站间空间依赖关系,结合多尺度时序分解,可显著提升SG系列逆变器集群的功率预测精度(MAE提升13.21%)。其自适应图学习机制能优化PowerTitan储能系统的充放电策略,实现多站点协同调度。轻量化DBF模块适合边缘侧部署,可集成至逆变器预测性维护功能,降低建模成本同时保持实时性,为构建高精度新能源预测调度系统提供技术支撑。