找到 3 条结果 · IEEE Transactions on Sustainable Energy

排序:
风电变流技术 GaN器件 深度学习 ★ 5.0

可解释性增强模糊集用于配电鲁棒最优调度中区域风电不确定性量化

Interpretable Augmented Ambiguity Set for Quantifying Regional Wind Power Uncertainty in Distributionally Robust Optimal Dispatch

Zhuo Li · Lin Ye · Ming Pei · Xuri Song 等6人 · IEEE Transactions on Sustainable Energy · 2025年7月

大规模风电并网给电力系统运行带来严峻的不确定性挑战。本文提出一种基于深度学习的可解释增强模糊集,用于分布鲁棒优化框架下的两阶段经济调度,以精确刻画区域风电不确定性。该模糊集融合各风电场细粒度误差模型及站点间交互依赖关系。首次提出多教师知识蒸馏-时间生成对抗网络(MKD-time GAN),通过级联学习机制构建单风电场预测误差的球形模糊集;进一步结合Nataf变换将多个模糊集映射为表征区域联合误差分布的增强模糊集,并推导出可 tractable 的两阶段调度求解算法。IEEE 118节点系统验证了...

解读: 该研究提出的深度学习增强模糊集方法对阳光电源的储能和风电产品线具有重要应用价值。具体而言:1) 可应用于ST系列储能变流器的调度优化,提升大规模风储联合系统的经济性和可靠性;2) 其多教师知识蒸馏框架可优化PowerTitan储能系统的功率预测算法,提高调度精度;3) 研究的区域联合误差建模方法可用...

光伏发电技术 储能系统 深度学习 ★ 5.0

基于气泡熵融合与SCAD正则化的鲁棒模糊认知图在光伏发电预测中的应用

Learning a Robust Fuzzy Cognitive Map Based on Bubble Entropy Fusion With SCAD Regularization for Solar Power Generation

Shoujiang Li · Jianzhou Wang · Hui Zhang · Yong Liang · IEEE Transactions on Sustainable Energy · 2025年2月

精确可靠的光伏功率预测对智能电网的经济调度与稳定运行至关重要。针对太阳能固有的间歇性、非平稳性和随机性导致现有方法难以满足高精度预测需求的问题,本文提出一种结合气泡熵与平滑截断绝对偏差(SCAD)正则化的模糊认知图(FCM)预测方法(BesFCM)。该方法利用气泡熵融合两种模态分解技术以增强光伏数据特征的稳定性与判别性,构建融合模糊逻辑、神经网络与专家系统的FCM模型,并引入高阶SCAD正则化学习机制抑制过拟合,提升模型鲁棒性与泛化能力。实验结果表明,该方法在比利时多区域、多采样间隔的光伏数据集...

解读: 该鲁棒模糊认知图预测技术对阳光电源iSolarCloud智能运维平台和PowerTitan储能系统具有重要应用价值。其气泡熵融合与SCAD正则化方法可显著提升光伏功率预测精度,直接优化SG系列逆变器的MPPT算法和功率预测模块。在储能侧,精准的发电预测能改进ST系列储能变流器的充放电策略,降低备用容...

风电变流技术 储能系统 ★ 5.0

考虑隐变量相互辅助的电力系统高斯混合模型不确定性建模

Gaussian Mixture Model Uncertainty Modeling for Power Systems Considering Mutual Assistance of Latent Variables

Xiao Yang · Yuanzheng Li · Yong Zhao · Yang Li 等6人 · IEEE Transactions on Sustainable Energy · 2024年1月

高斯混合模型(GMM)与狄利克雷过程混合模型(DPMM)常用于刻画电力系统中的不确定性,通常采用期望最大化(EM)算法求解。然而,在处理大规模不确定变量数据时,传统方法难以在较低时间消耗下准确获取模型参数。为此,本文提出一种考虑隐变量相互辅助的GMM不确定性建模方法。首先构建不确定变量的GMM,利用条件概率描述隐变量间的相互辅助关系;进而改进EM算法,在E步和M步中引入条件概率,并重新推导GMM参数的闭式解。基于澳大利亚实际风电与负荷数据的实验结果表明,所提方法在建模效率与精度方面均优于传统GM...

解读: 该研究提出的GMM不确定性建模方法对阳光电源储能和风电产品具有重要应用价值。该方法可应用于ST系列储能变流器和PowerTitan系统的功率预测与调度优化,提升系统对风电、负荷等不确定性的建模精度。特别是在大规模储能电站中,该方法可提高计算效率,为iSolarCloud平台提供更准确的发电/用电预测...