找到 2 条结果 · IEEE Transactions on Sustainable Energy

排序:
风电变流技术 深度学习 ★ 5.0

基于SCADA数据的周期增强型Informer模型用于短期风电功率预测

Periodic-Enhanced Informer Model for Short-Term Wind Power Forecasting Using SCADA Data

Zhao-Hua Liu · Long-Wei Li · Hua-Liang Wei · Ming Li 等6人 · IEEE Transactions on Sustainable Energy · 2025年4月

针对风电场SCADA系统提供的丰富运行与环境数据,提出一种周期增强型Informer模型用于短期风电功率预测。首先,采用基于v-p曲线与四分位法结合的方法滤除稀疏离群点,并利用DBSCAN算法去除功率曲线中的聚集噪声;其次,基于最大信息系数筛选多特征输入集以提升数据利用效率;进而设计时序卷积网络提取输入特征的标量投影,并融合局部与全局时间戳构建周期信息增强的嵌入层;最后,在Informer模型中引入多尺度深度融合模块,实现跨时间尺度特征的深层整合,有效避免了模型加深带来的资源浪费与过拟合问题。实...

解读: 该周期增强型Informer模型对阳光电源的智能运维和储能系统具有重要应用价值。首先,该模型的多特征输入与时序预测技术可直接应用于iSolarCloud平台的发电预测模块,提升风光储多能互补系统的调度效率。其次,模型的周期性特征提取方法可优化ST系列储能变流器的能量管理策略,特别是在PowerTit...

风电变流技术 储能系统 模型预测控制MPC 多物理场耦合 ★ 5.0

基于数据驱动灵敏度的风电场分散式需求功率跟踪与电压控制方法

A Decentralized Demanded Power Tracking and Voltage Control Method for Wind Farms Based on Data-Driven Sensitivities

Chang Yan · Sheng Huang · Yinpeng Qu · Xueping Li 等6人 · IEEE Transactions on Sustainable Energy · 2025年1月

风电场高效功率调度依赖于精确的需求功率跟踪。本文提出一种基于数据驱动灵敏度(DDS)的分散式风电场功率跟踪与电压控制方法,仅利用本地运行变量实现模型预测控制(MPC),获得近似全局最优解。通过反向传播算法设计新的灵敏度计算方法,由全局映射模型(GMM)梯度得到DDS。电压DDS可替代传统MPC中的电压灵敏度,功率DDS建立不同风电机组出力间的线性关系,简化状态空间方程,降低二次规划维度。所设计的三种控制模式无需线路参数、降低计算复杂度或兼具两者优势。变量间距约束线性化方法将非线性约束转为线性,解...

解读: 该文提出的数据驱动灵敏度控制方法对阳光电源的储能和风电产品线具有重要参考价值。特别是其分散式控制架构可应用于ST系列储能变流器集群和PowerTitan大型储能系统的协调控制,通过本地数据实现近似全局最优的功率调度。文中的电压DDS方法可优化储能变流器的电压控制性能,功率DDS的线性化处理思路可用于...